Trajectory enrichment
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= From “raw”
m sequences of fime-stamped locations (p.t) JRICIIINNC I KONURRPPTE
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. To context-enriched trajectories, i.e. meaningful mobility fuples about
where, when, what, how, why, etc.
= Semantic trajectories (Yan et al. 2011; 2012, Parent et al. 2015)
= Multi-aspect / holistic trajectories (Mello et al. 2019, Soares at al. 2019)
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Trajectory Similarity

m Key question: How do we measure similarity A
between two frajectories A, B¢
m not so trivial as it sounds B

= Various approaches:

m Trajectory as a k-D time-series, €.g. DTW, LCSS, EDR, ERP (Vlachos et al. 2002; Chen
et al. 2005)

m Trajectory as a k-D polyline, e.g. DISSIM distance function (Nanni & Pedreschi, 2006;
Frentzos et al. 2007)




‘ Trajectory clustering

m Objectives: Cluster trajectories w.r.t. similarity; eventually, detect outliers

Time

Time

Y-axis

X-axis

m Examples:
m Clustering on entire trajectories: T-OPTICS (Nanni & Pedreschi, 2006)

m Clustering on sub-trajectories: TraClus / TraOD (Lee et al. 2007; 2008); $2T-Clustering
(Pelekis et al. 2017a; 2017b)



‘ Sub-trajectory clustering

= Motivation: how many clusters
(and outliers) are formed by
trajectories Ty ... T42
m | cluster (O outliers)?

m O clusters (4 outliers)e

» What if we work at sub-
trajectory levele

m Challenge: how can we
detect the appropriate sub-
trajectories?
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Detecting group movement behavior

m Several variants

m Spherical-like clustering: Flocks (Laube et al. 2005;
Gudmundsson & van Kreveld, 2006)

m Density-based clustering: Convoys (Jeung et al. 2008);

Swarms (Li et al. 2010), etc.

m Generic solutions: Co-movement patterns (Fan et al.

2016; Chen et al. 2019)

m Note: they work on time-aligned location

sequences

m recall fixed re-sampling preprocessing task
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Frequent pattern mining

® Technical objective: identify ‘frequent’ or ‘popular’ patterns
m Patfterns could be routes (hot paths, etc.) or places (hot spofs, etc.)

m Approaches:

m techniques that identify
regularities in the behavior of a single user,
e.qg. Periodic patterns (Cao et al. 2007)

m techniques that reveal collective
sequential behavior of a set of users,
e.g. T-Patterns (Giannotti et al. 2007)
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Trajectory Prediction s
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traffic jam ___ p
ts
® Predict the future location(s) or even the entire trajectory V,:\ E
of a moving object (Georgiou et al. 2018) e /f\ t
to tz ts

= Formula-based prediction: linear, polynomial, etc. extrapolation
= Motion function models e.g. RMF (Tao et al. 2004)
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m Pattern-based prediction: patterns built upon historical information
m e.g. Sequential patterns (Monreale et al. 2009), Personal profiles (Trasarti et al. 2017)
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4. A real-world use case




A real-world MDA example

® The problem: data-driven aircraft trajectory prediction *

m ... instead of model-based prediction

m Data sources available include aircraft surveillance data (from multiple sources),

flight plans, air space zones, weather info, etc.

= H2020 project datAcron system architecture (Claramunt et al. 2017; Vouros

et al. 2018)

* For the following slides, credits to all
datAcron partners, especially BRTE and
CRIDA (aviation use case)
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‘ Data-driven aircraft frajectory prediction

m g flight is on the way; when and where is it expected to reach a specific status
(e.g. ‘top of climb’, ‘top of descent’, ‘touch down’)?

m Ultimate goal: perform this operation for every
flight in the globe af real-time

@flightradar2
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ght pt;an: Top of climb

t phase: Take off thrust applied
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