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Abstract. In this paper, we propose a novel unified online group pattern
mining algorithm, EvolvingClusters, that aims to enrich geospatial data
through the mapping of their group behaviour. Specifically, Evolving-
Clusters is used to discover collective movement behaviour (like flocks
and convoys) by monitoring the activity of multiple clusters through
time and space. We evaluate the aforementioned algorithm using a real-
world marine traffic dataset consisting of vessels’ movement in Brest
Bay, France. Our study demonstrates the efficiency and effectiveness of
the proposed algorithm as well as its value towards a semantic enrich-
ment tool that can be used to observe and categorize the behaviour of
multiple moving objects in real time.

Keywords: Big data · Data analytics ·Maritime intelligence · Collective
movement behaviour · Group patterns · Flocks · Convoys · Semantic
enrichment

1 Introduction

Mobility Data Analytics [9,2,21] is an ever growing branch of the general spec-
trum of Data Analytics. GPS-enabled mobile phones, cars, airplanes, and vessels
are the most common data sources broadcasting volumes of location information.
Using them as-is (i.e., in their “raw” form), offer us limited usefulness; however,
with proper processing (cleansing, transformation, enrichment etc.) and analysis
(pattern discovery), the vast amount of available data can produce some very
interesting and insightful stories. The outcome of data analytics over mobility
data is of great interest to researchers and practitioners of the field.

More specifically, in the field of semantic enrichment, behavioural clustering
can provide a concise and meaningful base that can be of value to multiple
mining methodologies. Classification with the use of artificial neural networks for
example, is a process that requires vast amounts of data, computational resources
and time. Using a behavioural clustering technique like EvolvingClusters can be
very beneficial, especially with respect to time and resources, since the classifier
will be able to train on a smaller set of objects that belong to multiple different
clusters instead of the full dataset that might contain objects with a lot of
similarities.

http://www.datastories.org/
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This paper focuses on mobility data analytics over maritime traffic data. In
particular, our purpose is to evaluate group movement behaviour at sea (e.g.
flocks, convoys) over enriched trajectories of vessels.

The contributions of our work are summarized in the following lines:

– We enrich vessel movement data with annotations regarding their closeness
to ports, etc.

– We design and evaluate a unified group behaviour discovery algorithm able
to simulate existing pattern discovery methods, such as flocks and convoys.

– We evaluate the above over a large-volume real-world maritime trajectory
dataset [22].

Our paper is structured as follows: In Section 2, we present background
knowledge and related work. In Section 3, we provide our problem formulation
and discuss what is special about maritime data. In Section 4, we present our
Evolving Clusters algorithm for unified group pattern mining. In Section 5, we
discuss preliminary experimental results. Section 6 concludes the paper, also
giving hints for future work.

2 Background Knowledge and Related Work

The field of trajectory data mining [27] is rich in methods capturing collective
movement of objects, i.e. sets of objects moving close to each other for a certain
time period.

Flocks [4,10,25] take into account the spatial proximity and the direction
of moving objects. For a flock pattern to be discovered, a minimal number of
trajectories that satisfy such constraints are required. Formally, a flock valid
during a time interval I, where I spans for at least k successive timepoints,
consists of at least m objects, such that for every timepoint in I, there is a
disk of radius r that contains all those entities. Technically, a flock discovery
algorithm is tuned by three parameters: k (the minimum number of successive
timepoints), m (the minimum number of neighboring objects), and r (the radius
that defines the neighborhood). Companion [24] and Gathering [26] are two flock
variations, focusing on online / streaming applications.

A convoy [12,13,20] is a group of objects consisting of at least m objects that
are density-connected with respect to a density-reachability distance threshold e,
during at least k consecutive timepoints. Specifically, assuming the partitioning
of the database of the objects’ locations with respect to a discretization of the
time dimension, a snapshot Si (i.e., the set of objects and their locations that
exist at time ti), is clustered using a typical density-based spatial clustering
algorithm like DBSCAN [7], to identify dense groups of objects in Si that are
close to each other and the density of the group meets the density constraints
of the clustering algorithm, i.e. the minimum number of objects in an object’s
neighborhood, MinPts, and the maximum distance for two objects to be directly
density-reachable, e, according to DBSCAN’s parameters. Technically, a convoy
discovery algorithm is tuned by three parameters: k, m (as defined in flocks
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above), and e. Compared to flocks, convoys actually differ in that the circular
neighborhood is replaced by the notion of density-connection. Convoy variations
include groups [17] and evolving groups [15].

A swarm [19] is a collection of moving objects with cardinality of at least
m, that are part of the same density-based cluster, defined by a reachability
distance threshold e, for at least k (not necessarily consecutive) timepoints.
Moreover, comparing the clusters themselves, the population is not required
to remain unchanged but at least one cluster containing all objects should be
discovered. Note that the trajectory of each object in-between these timepoints,
is not under any constraint. Technically, a swarm discovery algorithm is tuned
by the same three parameters, k, m, and e, as in the cases of moving clusters
and convoys above, with the main difference being that swarms do not require
the set of at least k timestamps to be consecutive.

Further related work includes the following. A moving cluster [14] is a se-
quence of clusters c1, . . . , ck, such that for each timestamp ti, clusters ci and
ci+1 share a sufficient number of common objects. Intuitively, if the two spatial
clusters at two consecutive snapshots have a large percentage of common ob-
jects then they are considered a moving cluster between these two timestamps.
A moving micro cluster [18] is a group of objects that are not only close to each
other at the current time, but they are also expected to move together in the
near future; techniques for maintaining clusters of moving objects by consider-
ing the clusters of the current and near-future positions are proposed in [11];
[6] presents a taxonomy/classification of movement patterns along a set of di-
mensions that reveal their behavior (and commonalities); [3] demonstrates the
shortcomings of the Jaccard (J) measure when it is used for assessing the signif-
icance of co-occurrences among spatiotemporal instances with highly different
spatiotemporal evolution characteristics and presents two extended novel mea-
sures (J+ and J∗) that address the problems linked to the J measure; [5] studies
a regional semantic trajectory pattern mining problem, aiming at identifying all
the regional sequential patterns in semantic trajectories.

Most related to our work, [16] defines various mobility behaviors around the
idea of the flock pattern; in particular, the Relative Motion (REMO) model and
a respective language are proposed in order to express a number of collective
mobility patterns under a unified representation. [23] proposes, among others,
gpattern and crosspattern, two generic query operators implemented and vali-
dated in the Secondo MOD system [1], which express groups of moving objects
that follow similar motion and mutually interact together, respectively (mobil-
ity behaviors, such as flocking, convergence, and leadership can be simulated
through these operators).

With respect to related work, our method handles closeness of moving objects
in a unified way under a graph-based approach, being able to simulate the most
popular patterns (i.e. flocks and convoys) in an online mode.
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3 Problem Formulation

An informal group pattern definition could be: “a large enough amount of objects
moving along paths close to each other for a certain time”. These objects could
vary from animals (e.g. wolves, birds, lions, etc.) to human transportation means
(e.g. cars, airplanes and vessels). Discovering these patterns can give us an insight
regarding the behavior of these moving objects, for instance on hunting (wolves,
lions), migration (birds), traffic monitoring (cars) and fishing pressure (fishing
vessels). In this paper we aim at handling group pattern discovery in a uniform
way, where “closeness” is formulated in graph-based terminology.

3.1 Problem definition

Definition 1. (Evolving Cluster). Given: a set T of moving objects, where the
trajectory of each object consists of r pairs (pi, ti), a minimum cardinality thresh-
old c, a maximum distance threshold θ, and a minimum time duration threshold
d, an Evolving Cluster 〈C, tstart, tend, tp〉 is a subset C ∈ T of the moving objects’
population, |C| ≥ c, which appeared at time point tstart and remained alive until
time point tend (with tend–tstart ≥ d) during the lifetime [tstart, tend] of which
the participating moving objects were spatially connected with respect to distance
θ and cluster type tp.

The term “spatially connected” is used on purpose in the above definition,
since the structure of our method accounts for a number of different clustering
methodologies. In this study, we use both spherical and density-based clustering
in order to mine flock and convoy-like patterns, respectively. In particular, for
each time point, let us consider the mapping of the points of the moving objects’
trajectories (that are active at that time point) in a connectivity graph G(V,E),
where vertex v ∈ V represents a point and edge e ∈ E represents a pair of
points if and only if their distance is less than the given threshold θ; Cliques
in this graph correspond to spherical-like clusters whereas Maximal Connected
Subgraphs (MCS) in this graph correspond to density-connected clusters. Cliques
(maximal connected subgraphs) that remain alive for an adequate period of
time are evolving clusters, according to the above definition, that resemble flock
(convoy, respectively) patterns. This concept is better illustrated in Figure 1.

According to Figure 1, sets C1 = {a, b, c, d} and C2 = {a, b, c, d, e, f} form
a Clique and an MCS, that remain active for three time points t1, . . . , t3, while
C3 = {a, b, c} and C4 = {d, e, f} form a Clique and an MCS, that remain active
during all four time points t1, . . . , t4. Assuming thresholds e.g. c = 3 and d = 3,
we have discovered three Evolving Clusters, the spherical-like 〈C1, t1, t3, 1〉 and
〈C3, t1, t4, 1〉, and the density-connected 〈C2, t1, t3, 2〉 and 〈C4, t1, t4, 2〉, where
cluster type 1(2) corresponds to Clique (MCS, respectively). This example il-
lustrates that two evolving clusters can be overlapping with respect to their
population.
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Fig. 1: An example of six objects moving at four consecutive time points and
the respective connectivity graphs.

3.2 What is special about maritime data

It is well known that sensor-based information is sensitive to errors due to device
malfunctioning. Therefore, a necessary step before performing data analytics
tasks is that of pre-processing. A necessary clarification is that since the vessels’
locations are recorded in angular (lat/lon) coordinates, we use the Haversine
formula as it takes in account the data points’ geodesic properties.

In general, pre-processing of GPS-based location data includes data cleans-
ing (noise elimination, location smoothing, etc.) as well as data transformation
tasks necessary for the analysis that will follow (fixed rate resampling, trajectory
segmentation, etc.) [21]. A typical data preprocessing workflow consists of the
following steps:

1. Data Cleansing:
a. Remove time-based duplicate records;
b. Remove position-based outliers (i.e. invalid speed, acceleration, etc.);

2. Data transformation
a. Create Trips from vessels’ locations;
b. (Optional) Perform fixed-rate resampling on Trips;

In particular for Step 2a and in order to organize vessels’ locations in trips,
a popular approach (in case the ports are given as points instead of polygons) is
to create a circle with radius ρ around each port’s location in order to approxi-
mate their geometry and then, detect port entry and exit points for each vessel
trajectory (Port-based Segmentation).

Then, for each produced segment, we may detect pairs of points with tem-
poral difference greater than a given threshold (Temporal-based Segmentation).
These pairs signify the transition from the current to the next Trip.

The segmentation due to the above steps, may result in a very low number of
points. Because they do not offer any significant information, we decide to filter
out these particular Trips (in particular, those consisting of less than 3 points).

Depending on their connection with ports, vessels’ trips can be classified in
4 classes:
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12h Temp. Gap

(a)
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(b)

Fig. 2: A sample trajectory: (a) before; and (b) after trajectory segmentation
into trips.

– Class C1 — trips that start and end at a port;
– Class C2 — trips that start at a port and end at open sea;
– Class C3 — trips that start at open sea and end at a port;
– Class C4 — trips that start and end at open sea;

The aforementioned methodology is illustrated in Figure 2, where the raw
location information is compared with a port’s location, hence a vessel trajectory
is segmented into trips of Class C1 (e.g. trip2 in Figure 2(b), Class C2 (trip3),
Class C3 (trip1), and Class C4 (trip4).

Given that a vessel traffic dataset consists of GPS points that are sampled
whenever the captain of each vessel enables the AIS transmitter, it is obvious that
there is no form of consistency regarding the time intervals between points. For
example, it is easily observable that a vessel is highly likely to stop transmitting
for a considerable amount of time if that vessel is inactive, e.g being stationary
on a port. As a result, while also keeping in mind that several techniques used
for future location prediction as well as group pattern mining need or benefit
substantially by a stable rate of sampling and, by extension, a temporal align-
ment, a fixed-rate resampling technique [8] is used to achieve the consistency
needed; see Figure 3 for an illustration of the above discussion.

4 The EvolvingClusters algorithm

In this section we present an algorithm, called EvolvingClusters, in order to
detect and extract group patterns from raw GPS data points. This algorithm is
fully modular, mining clusters with respect to the spatial clustering restrictions
stated in the previous sections and then by applying the temporal restrictions,
can fetch different types of group patterns simultaneously (in our case, Cliques
and MCS ). Due to the fact that we only compare our pattern history with the
current time-slice, the algorithm can be connected to a data stream, thus having
an online nature.

Algorithm 1 presents the algorithm’s corpus. In particular it discovers evolv-
ing clusters in a trajectory dataset D, where moving objects’ locations arrive
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(a) (b)

Fig. 3: A sample vessel trip: (a) before; and (b) after resampling (with 1 min.
fixed sampling rate).

Algorithm 1: EvolvingClusters. An online algorithm capable of
mining the Group Patterns as discussed in the previous subsections

Input: A Dataset D = {T1, T2, . . . , Tn} of Time-slices Ti consisting of objects’
timestamped locations (pj , ti), Distance Threshold θ, Time Threshold
t, Cardinality Threshold c

Output: A list of all the mined patterns MinedPatterns
1 ActivePatterns, ClosedPatterns← []
2 for Time-slice T in D do
3 CCliques, CMCS ← GeospatialClustering(T, θ, c)
4 for CurrentClusters in {CCliques, CMCS} do
5 if ActivePatterns == ∅ then
6 ActivePatterns← CurrentClusters
7 else if CurrentClusters == ∅ then
8 ClosedPatterns← {ActivePattern ∈ ActivePatterns :

ActivePattern.end−ActivePattern.start ≥ t}
9 else

10 ActivePatterns, InactivePatterns←
FindPatterns(CurrentClusters,ActivePatterns, θ)

11 ClosedPatterns← {InactivePattern ∈ InactivePatterns :
InactivePattern.end− InactivePattern.start ≥ t}

12 end
13 output

{Pattern ∈ ActivePatterns : Pattern.end− Pattern.start ≥ t}
14 end

15 end
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at predefined timepoints (e.g. every 60 sec.) or, in other words, at a fixed (and
aligned amongst all objects) sampling rate.

In the following paragraphs we provide a thorough explanation regarding
its operation. Algorithm 1 is responsible of using the results provided by Al-
gorithm 3 in a sequential manner. Essentially Algorithm 1 uses the results of
Algorithm 2 and decides if the available data in the form of ActivePatterns
(patterns previously mined) and CurrentClusters (clusters formed based on
the location of moving objects at the current time-slice) are eligible to be used
as input to Algorithm 3. If not (either set is empty), the algorithm either moves
the clusters currently active to the ActivePatterns set (if ActivePatterns = ∅)
or moves all the patterns that satisfy the thresholds given from ActivePatterns
to ClosedPatterns (if CurrentClusters = ∅).

Algorithm 2: Geospatial Clustering. Clusters GPS Points given
a Time-slice
Input: Time-slice T = {p1, p2, . . . , pn} of coordinate points, Distance

threshold θ, Cardinality threshold c
Output: Clusters of the Time-slice’s Points CCliques, CMCS

1 DistanceMatrix← PairwiseDistance(T, metric = “Haversine Distance”)
2 Pairs← {(pi, pj) : DistanceMatrix(pi, pj) < θ}
3 G← Graph(edges = pairs)
4 CCliques ← {C ∈ G.Cliques() : |C| ≥ c}
5 CMCS ← {C ∈ G.MaximalConnectedSubgraphs() : |C| ≥ c}
6 return CCliques, CMCS

Algorithm 3 takes all the following cases into consideration: (for pattern Cti

at time ti and Cti+1 at time ti+1)

1. The patterns are identical (Cti = Cti+1)
2. The patterns have no common objects (Cti ∩ Cti+1 = ∅)
3. The pattern Cti is a subset of Cti+1

(Cti ⊂ Cti+1
)

4. The pattern Cti+1
is a subset of Cti (Cti+1

⊂ Cti)
5. The patterns contain some common objects (Cti ∩ Cti+1

6= ∅, Cti ∩ Cti+1
⊂

Cti , Cti+1
)

Therefore, the algorithm operates as follows:

– For every pair of consecutive (with respect to time) pattens, if the cardinality
of their intersection is greater than c, add it to the ActivePatterns set (lines:
4–7).

– For every pattern in Cti+1
, if the list of its intersections with all of the

patterns in Cti doesn’t contain the pattern, add it to the ActivePatterns
set as a new pattern (lines: 8–9).

– For every pattern in Cti , if it is not part of the ActivePatterns set, add it
to the InactivePatterns set (line: 11).



Online Discovery of Group Patterns in Enriched Maritime Data 9

– Replace each group of duplicate patterns in the ActivePatterns set, with a
single record of each pattern and substitute its starting and ending times-
tamps with the oldest starting and newest ending timestamps available in
the duplicate group (lines: 12–17).

We observe that in all cases the pattern that ought to be maintained through
time is the intersection of Cti and Cti+1 . Cases 2 and 3 require some extra
attention. Regarding case 2, the intersection is an empty set. As a result, Cti+1

should be maintained and added to the ActivePatterns set. Case 3 dictates
that both the new superset and the previous pattern should be maintained since
they both exist at the same time as part of Cti+1

.

Algorithm 3: FindPatterns. Compares the current with the closed
clusters in order to determine their evolution
Input: Consecutive datasets Dleft, Dright, Cardinality threshold c
Output: Mined patterns ActivePatterns, InactivePatterns

1 ActivePatterns← []
2 for Pattern PR in Dright do
3 IntersectionList← {}
4 for Pattern PL in Dleft do
5 if |PR ∩ PL|≥ c then
6 ActivePatterns.append([[PR ∩ PL, PL.start, PR.end]])

7 end
8 if IntersectionList = ∅ then
9 ActivePatterns← PR

10 end
11 InactivePatterns← {pattern ∈ PL : pattern /∈ ActivePatterns}
12 for Pattern Pactive in ActivePatterns do
13 DuplicatePatterns← [patternA, patternB ∈ Pactive : (patternA =

patternB) ∧ (patternA 6= patternB)]
14 if |DuplicatePatterns|6= 0 then
15 Pactive.start← min(DuplicatePatterns.start)
16 Pactive.end← max(DuplicatePatterns.end)

17 end
18 return ActivePatterns, InactivePatterns

Based on Figure 1 the proposed algorithm for c = 3, t = 3 would mine the
patterns C1 = {a, b, c, d}, C2 = {a, b, c, d, e, f}, C3 = {a, b, c} and C4 = {d, e, f}
as follows:

– t1: Clique 〈C1, t1, t1, 1〉 and MCS 〈C2, t1, t1, 2〉 mined (Output: ∅);
– t2: Clique 〈C1, t1, t2, 1〉 and MCS 〈C2, t1, t2, 2〉 mined (Output: ∅);
– t3: Clique 〈C1, t1, t3, 1〉 and MCS 〈C2, t1, t3, 2〉 mined (Output: {C1, C2});
– t4: Clique 〈C3, t1, t4, 1〉 and MCS 〈C4, t1, t4, 2〉 mined (Output: {C3, C4}).

For timestamps t1 through t3, C1 and C2 are mined and maintained. During
timestamp t4, two new patterns are found (C3 and C4), however both new pat-
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terns are present during t3 as subsets of C1 and C2 respectively. Thus they get
to keep the starting timestamp of their respective past supersets.

5 Experimental Study

In this section we prepare the dataset that the algorithm will be tested on and
present some preliminary results regarding its effectiveness.

5.1 Dataset preparation

In our study, we use a publicly available maritime dataset, called Heteroge-
neous Integrated Dataset for Maritime Intelligence, Surveillance, and Recon-
naissance [22], which contains information on maritime traffic in France. The
dataset ranges in time and space as follows:

– temporal range: October 1st, 2015 to March 31st, 2016 (6 months);
– spatial range: latitude in [45.00, 51.00], longitude in [-10.00, 0.00] (Celtic sea,

the Channel and Bay of Biscay).

Fig. 4: A snapshot from the Brest dataset: sample of AIS positions on March
1st, 2016 (blue dots) and ports of interest (red dots).

A map visualization of (a part of) the dataset is illustrated in Figure 4.
The original dataset contains three classes of information: vessel-dynamic (i.e.,
related to the vessels’ movement), vessel-static (i.e., related to the vessels’ iden-
tity), and geo-related data (locations of ports, environmental information, etc.).
For the purposes of our study, we exploit on the entire vessel-dynamic and vessel-
static information available while from the third class we are only interested in
the locations of ports, information which is essential for the analysis we design
to perform. In particular:
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– The vessel-dynamic data contains approximately 19 million records. Each
record corresponds to an AIS signal and includes the vessel identity (mmsi),
its position (lon, lat), the timestamp this position was recorded (ts) as well
as other mobility-related information provided by vessel’s sensors (speed,
course, heading, etc.).

– The vessel-static data contains information about vessel registration, such
as the vessel’s identity (mmsi), radio frequency (call sign), name, type, size,
etc.

– The geo-related data we used in our study contains 222 records; each record
corresponds to a port along with its name and location (point geometry).

Due to step 2a (recall the preprocessing steps of Section 3.2), with port
radius set at 2km (≈ 1.08 n.m.) and temporal threshold at 12 hrs., trajectory
segmentation yields 9,545,789 data points organized in 24,159 trips from 3,279
vessels (segments with very few data points - i.e. less than 3 - are discarded).

#Records Number of AIS Records. 9,545,789
#Vessels Total number of vessels. 3279
#Trips Total number of trips. 24,159
#Trips Class C1 Total number of trips that started and ended at a port. 11,690
#Trips Class C2 Total number of trips that started at a port and ended 2580

at open sea.
#Trips Class C3 Total number of trips that started at open sea and ended 1849

at a port.
#Trips Class C4 Total number of trips that started and ended at open sea. 8040

Table 1: Statistics of the dataset after the pre-processing step.

5.2 Preliminary results

Having processed our dataset using the methodology presented in Section 3.2,
we tested our algorithm on a wide range of values for each parameter, namely:

– Cardinality Threshold (c): 3, 5, 8, 12. Default: 5 vessels
– Temporal Threshold (t): 15, 30, 45, 60. Default: 15 minutes
– Distance Threshold (θ): 0.25, 0.5, 0.75, 1, 1.25. Default: 1 nautical mile

Figure 5 illustrates the average percentage of trip classes C1 - C4 in the mined
group patterns (using the default parameters). In either pattern type, we observe
that C1 is the most dominant class (having more than 60% participation), which
is reasonable since the same participation appears – more or less – at trip level
(see Table 1). On the other hand, C4 presents an interesting behaviour: although
its percentage at trip level is about 30%, this percentage falls down to 13%
within cliques and 7.7% within MCSs. Comparing the two pattern types (cliques
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and MCSs) with each other, we observe that cliques appear to be formed more
frequently than MCSs when we focus on C3 or C4 while the opposite is the case
when we focus on C1 or C2. These findings may trigger domain experts to take
a deeper look and reach insightful conclusions.

C1

64.1%

C2

8.1%

C3

14.9%

C4
13.0%

Cliques Trip Contribution

(g)

C1

72.5%

C2

9.3%
C3

10.5%

C4
7.7%

MCS Trip Contribution

(h)

Fig. 5: Trip contribution on mined (g) Cliques (h) MCS.

Figure 6 illustrates the change of average distance travelled (#group patterns,
respectively) with respect to one of the algorithm’s parameters, while the others
are fixed to their respective default values. It can be observed that as c increases,
both types of group patterns decline both in their respective average distance
travelled and their cardinality (Figures 6a and 6b, respectively), while on the
other hand, as θ increases, the opposite can be seen (Figures 6c and 6d, respec-
tively). Moreover, as t increases, we observe a steady rise in the average distance
travelled for both patterns but at the cost of having fewer patterns (Figures 6e
and 6f, respectively). Furthermore, it is shown that Cliques are quite sensitive
with respect to their thresholds while MCS as less sensitive, showing a more
steady growth/decline (Figures 6b,d and f). Last but not least, as illustrated
by Figures 6a,c and e, a linear-like correlation can be observed between the
thresholds c, t, θ and the average distance travelled.

6 Conclusions and Future Work

In this paper, we proposed a unified online group pattern mining algorithm,
called EvolvingClusters, which is used to discover collective movement behaviour
(like flocks and convoys) by monitoring the activity of multiple clusters through
time and space. The algorithm is graph-based in the sense that it maintains
evolving Cliques and Maximal Connected Subgraphs (MCS), thus simulating
spherical and density-based evolving clusters. Our study on a large real-world
maritime traffic dataset demonstrates the efficiency and effectiveness of the pro-
posed algorithm. The results show that our method is capable of detecting a
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large amount of group patterns in the given dataset. Thus, based on the poten-
tial applications, some of which were mentioned above, as well as the quality of
the results produced, we believe that EvolvingClusters can be a valuable tool for
researchers and practitioners alike.

In the near future we aim to test and evaluate EvolvingClusters against other
state-of-the-art techniques, using other types of mobility data, such as aviation
and public transportation data. Based on our assumptions, the algorithm should
function at the same quality level no matter the data type used, since its ap-
proach does not make use of any other apriori form of knowledge like road grids
or hot-paths. Another set of experiments that we would like to conduct in the
near future is using data with different sampling rates as input for EvolvingClus-
ters. If the results appear to be in the same quality level with those produced
from a dataset with a much higher sampling rate as input, we would be certain
that the value of the algorithm is not tied to the sampling rate of the given data.
Our long-term plans involve around the creation of a framework that will use the
information that is mined using EvolvingClusters to classify moving objects into
different classes based on their behaviour. By extracting as much information
as possible from the available data and combining a well trained classifier with
a well defined set of groups with similar behaviour, we want to create a system
able to model and – if possible – predict a set of suspicious activities that might
consist a violation of law or a possible criminal activity.
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