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Abstract. Current location-aware systems rely increasingly on location
prediction techniques in order to provide their services in a timely fash-
ion. At the same time, it has been shown that the use of additional
context information, that is, elevating the degree of semantic enrichment
of movement data, can lead to significant better results both for analyz-
ing as well as for modeling human trajectories and predicting upon them.
In this work, we propose a Multi-Channel Convolutional Neural Network
(CNN) based approach for capturing all the existing context dimensions
in our semantic trajectory dataset aiming at achieving a higher predic-
tion accuracy compared to a vanilla Single-Channel CNN. Moreover, we
investigate whether and to what degree time, activity, companionship
and the user’s emotional state have an impact on the predictive per-
formance of our multi-dimensional CNN. We evaluated our model on
a real-world dataset and compared it to a probabilistic Markov Chain
model and a vanilla CNN at two semantic representation levels. It can be
shown that especially for the high level case, the present approach is able
to outperform the baseline models achieving an overall higher accuracy
and f-Score.

Keywords: Semantic Locations and Trajectories - Purpose of Visit -
Human Activities - Emotional States - Affective Computing - Multi-
Channel Convolutional Neural Networks.

1 Introduction

The market of context-aware, and especially, location-aware computing and ser-
vices (see Location-Based Services (LBS)) has gained enormously in importance
over the past few decades. In their attempt to provide timely solutions to their
users, LBS providers rely more and more on location prediction methods, a fact
that additionally strengthened the demand for accurate location prediction al-
gorithms.
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Typical location prediction models are usually merely data driven and depend
therefore heavily on the size and the quality of the available training dataset.
However, recent research has shown that the use of additional semantic informa-
tion can help overcome, at least to some extent, the aforementioned issues and
can therefore lead to an overall better predictive performance (see Section 2).
That is, in the case of modeling and learning human movement patterns, mod-
els are fed and trained with the users’ (GPS) location trajectories. Additional
context information, such as the location type and the user’s activity, may be
used to enrich them semantically and generate so-called semantic trajectories
(see Section 3). This type of extensive input helps the model dive even deeper
into the users’s movement behaviour and can lead to more accurate predictions.

Common approaches used to model and predict human movement include
probabilistic methods, such as Markov Chains [2,9], Dynamic Bayes Networks
[8], Hidden Markov Models [25,30] and Artificial Neural Networks (ANNs). In
the latter case, recurrent neural network architectures (RNNs) have generally
proved to perform above the average when it comes to learning sequences and
for this reason these are commonly found in the location prediction domain as
well. Especially memory-based neural network types, like the Long Short-Term
Memory network (LSTM), are capable of achieving high prediction rates and
tend to outperform the competition [27, 20].

While recurrent network types are the preferred choice when it comes to mod-
eling 1-dim movement, recent work showed some promising results on the part
of Convolutional Neural Networks (CNNs) [19,24], a model normally used in
the 2-dim image classification and object recognition domain. It seems that the
locally focused nature of the kernel-based convolution process enables the CNN
model to capture existing dependencies between current and future locations.
The presented work builds upon the aforementioned work and aims at investi-
gating the use of a multi-channel CNN based approach with regard to modeling
multi-dimensional semantically enriched location data and predicting the next
semantic location of the user. In particular, our semantic trajectories consist of
the following feature dimensions: semantic location type, time, human activity,
emotional state and companionship. Moreover, this work further explores the im-
pact of the degree of semantic enrichment, that is, whether and to what extent
each of the aforementioned dimensions influences the predictive performance of
our model. We evaluated our approach using a real-world dataset, which we col-
lected from 21 users by conducting a 2-months long user study. In addition, we
selected a 1. Order Markov Chain model and a vanilla CNN as baseline models
to compare with.

This paper is structured as follows. Section 2 provides a short overview over
some of the most related work in the semantic trajectories and location predic-
tion domain. Next, Section 3 describes the notion of semantic trajectories and
semantic locations with respect to this work. Section 4 goes briefly through the
theory behind Convolutional Neural Networks and discusses in detail the pro-
posed approach, while Section 5 provides the respective evaluation outcomes.
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Finally, Section 6 summarizes the evaluation results and draws some final con-
clusions.

2 Related Work

There exist many different ways of viewing movement data. Within the scope of
mining and analyzing movement patterns, Spaccapietra et al. introduced with
[28] one of the first works that make the importance of viewing trajectories of
moving objects in a conceptual manner clear. In their work, they highlighted
the fact that describing certain aspects of the movement’s context by adding
semantic information into the available trajectories can significantly support the
analysis of the respective movement patterns, as well as the querying process
among them. Alvarez et al. came to the same conclusion as they suggested the
use of a similar semantic enrichment model to generate semantic trajectories
for the same reasons [1]. The added value of working on semantically enriched
trajectory data in comparison to working on raw data with regard to mining
patterns and supporting decision processes has been underpinned by Elragal et
al. as well [7]. Bogorny et al.’s work focuses in mining trajectory patterns as
well and introduced in [3] a sophisticated model, which in contrast to former
models is capable of handling complex queries over semantic trajectories, while
providing different semantic granularities at the same time.

Due to the aforementioned benefits that semantic enrichment brings with it,
a number of location prediction papers have recently emerged presenting algo-
rithms that rely on the notion of semantic trajectories. Ying et al. for instance
were one of the first to build upon semantic trajectories generated from the users’
raw GPS recordings in order to enhance their location prediction framework [32]
with promising results. Some years later, they extended their model by taking,
apart from geographic and semantic patterns, temporal patterns into account as
well [31].

Karatzoglou et al.’s work explores a big variety of models with respect to
modeling human semantic trajectories and predicting the user’s next semantic
location. In [11] and in [18] they evaluate a multi-dimensional Markov Chain
model for predicting among activity-enriched semantic trajectories and show
that is able to outperform Ying et al.’s framework in terms of accuracy. With
regard to recall however, they could identify certain limitations on behalf of the
model due to its adverse dependency on the small size and the sparsity of the
available training dataset. They attempt to solve this issue by combining the
probabilistic Markov Chain model with Matrix Factorization in [12], where they
were able to raise the recall scores.

In [20], [17], [13] and [19], Karatzoglou et al. investigate the performance of
Artificial Neural Networks using the probabilistic Markov model as baseline. In
addition, they explore the role of the semantic granularity of the considered tra-
jectories in the overall performance of the networks. They show that the higher
the semantic level is, the better the modeling quality of the networks. While the
findings in [20] comply with the results of related work showing that Long Short-
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Term Memory networks are generally able to outperform the vanilla Recurrent
(RNN) and Feed-Forward ones, [17] indicates no great advantages towards the
attention-based application of Sequence to Sequence learning (Seq2Seq) com-
pared to the standard single-input-single-output LSTM model of [20]. Yao et al.
propose in [29] a similar to [20] LSTM-based recurrent approach for predicting
next semantic locations using an additional embedding input layer, the benefits
of which have been also recently shown by Gao et al. in [10]. Other than in
[20] and following a similar direction to the approach proposed in the present
paper, Yao et al. used beyond location and time the content of the checkins
of the users to enrich the users’ semantic trajectories, which describe in a way
their activity that we’re considering in this work as well (among others). How-
ever, in contrast to the Reality Mining dataset [6] used in Karatzoglou et al.’s
work, they evaluate their approach on rather long-term dependencies using a
Foursquare and a Twitter dataset. In [13], Karatzoglou et al. take a look at a
gradient-free optimization method for finding the optimal hyperparameter set of
a LSTM model based on an evolutionary algorithm. Their work provides some
preliminary results indicating among others the temporal efficiency on part of
the genetic, population-based optimization method, provided the availability of
sufficient computational power.

However, the most striking findings come rather from [19], where a Convolu-
tional Neural Network based approach in combination with an embedding layer
as its input is capable of achieving higher prediction scores than the FFNN,
the RNN and the LSTM. To our knowledge this represents the only work that
explores the use of CNNs with respect to modeling and predicting upon 1-dim
semantic trajectories. The closest work to [19] would be the work of Lv et al. in
[24], which evaluates the use of a CNN for modeling and predicting large-scale
taxi trajectories. Other than in [19] and the present paper, Lv et al. work with
raw GPS data without using any semantic information and map past trajectory
data onto 2-dim images before feeding them into the CNN model, transform-
ing in this way the trajectory modelling task into an image classification task.
In the present paper, following the example of [19], we skip this kind of 1-dim
to 2-dim intermediate transformation step and apply our CNN model on the
1-dim semantic trajectory as it is. As in [19], we build our approach upon simi-
lar CNN-based work on 1-dim data, coming mostly from the Natural Language
Understanding (NLP) domain, such as the framework described in [5] and the
multi-channel CNN model of [21].

3 Semantic Trajectories

The term trajectory refers to a sequence of consecutive location points traversed
by a moving object within a certain time interval. Eq. 1 describes a typical GPS
trajectory with each location point being represented by a tuple containing its
coordinates (long;, lat;) and the corresponding point of time ¢; at which this
was visited.
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Trajaps = (longy,laty, t1), (longa, late, ta), ..., (long;, lat;, tr), (1)

As already mentioned in Section 2, in order to better understand the moving
behaviour of moving objects and create more accurate models, Spaccapietra et
al. [28] and Alvares et al. [1] went beyond this kind of numerical sequences
by adding a semantic view upon them and introduced the so-called semantic
trajectories. Starting initially with the simple notion of “stops” and “moves”, a
(human) semantic trajectory can nowadays be defined generally as a sequence
of semantically significant locations (semantic locations, e.g., “home”, “burger
joint”, etc.) as follows:

Trajsem = (SemLocy,ty), (SemLoca, ta), ..., (SemLoc;,t;) (2)

A significant location in this case is usually defined by a location within a
certain radius (e.g., 200m) where a user stays longer than a pre-defined temporal
threshold, e.g. 20min (see [2]). Some researchers add further thresholds, like the
loss of the GPS signal due to entering into a building, the GPS recording stop
[4] or the popularity, in order to extract the most significant common or public
locations [32]. In this work, we evaluate our method using a dataset in which
the users annotated their longest visits (> 15min) themselves (see Section 5).

Depending on the number of the considered semantic features, a semantic
trajectory can have multiple dimensions. Thus, we could say that the number
of dimensions expresses the degree of semantic enrichment of the respective se-
mantic trajectory. In this work, we follow the concept of the Location-Specific
Cognitive Frames introduced by Karatzoglou et al. in [14, 15] and we consider
each stop at a semantic location to be a tuple encapsulating the current loca-
tion type, the current time, the current activity, as well as the user’s current
emotional state and whether he is alone or not (companionship). Beyond that,
locations can be described differently depending on the semantic representation
level, e.g., “restaurant” — “fast food restaurant” — “burger joint”. In this work,
we evaluate the modeling performance of CNNs at two different semantic levels.

4 Multi-Channel Convolutional Neural Networks on
Semantic Trajectories

This section consists of two parts. The first part gives a brief insight into the
theory behind Convolutional Neural Networks and goes briefly through some of
the most common CNN steps and layers using the example of image classifica-
tion. Then, the second and last part describes in detail the architecture of the
multi-channel CNN model proposed in this paper for modeling and predicting
upon multi-dimensional semantic trajectories.

Convolutional Neural Networks (CNN) represent the standard choice in the
image classification and object recognition domain [23]. However, this doesn’t
mean that it is the only domain in which we can apply them expecting reasonable
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Fig. 1. Typical CNN architecture for the image classification task (source: [26]).

results as we saw in Section 2 and can also be seen in [22]. Fig. 1 illustrates a
typical CNN pipeline used for classifying images.

A typical CNN consists of many different layers starting usually with the
(first) convolutional layer. This layer is responsible for convolving the input im-
age and generating the so-called feature maps. This is done by sliding a group
of small-sized filters (also called kernels) with each containing a certain number
of learnable weights over the input image and performing element-wise multi-
plication at each possible position. The generated feature map from each kernel
is a new layer and contains the findings of the particular kernel in the input
image, ideally with respect to a specific single distinguished feature. The num-
ber of kernels defines the number of the generated feature maps (so-called depth
of the convolutional layer) and represents a CNN hyperparameter which needs
to be selected appropriately based on the available data and task. In the next
step, this resulting group of layers undergoes a so-called pooling process. Pooling
refers to a downsampling operation, in which sets of elements in the feature maps
are combined and reduced to a single value based on some criterion (e.g., take
the maximum value: max pooling) or calculation (e.g., take the average over all
values: average pooling). The two aforementioned layers can be repeated multi-
ple times using different kernels of different size and depth. This supports the
successive extraction of higher level features and represents one of the strengths
of CNNs. Finally, the last pooled layer can be flattened into a single vector con-
taining all its weights and connected to a fully connected layer, which is further
connected to the output layer that contains a field for every possible class and
provides us with the classification estimation for the given input.

The multi-channel approach introduced in this paper builds upon the afore-
mentioned typical CNN architecture and extends it by adding a further em-
bedding layer into the model and raising the number of channels matching
the degree of semantic enrichment of our data (see Section 3). Fig. 2 illus-
trates the architecture of our approach. Our framework takes as input a part
of a semantic trajectory, which is in our case a sequence of tuples in the form
of (locationtype, purposeo fuvisit, time, emotional state, companionship) accord-
ing to a predefined temporal horizon t, that determines how far backwards in
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Fig. 2. Multi-Channel CNN for modeling multi-dimensional semantic trajectories.

the movement history of the user should the model consider for providing an
estimation about her next semantic location. In a first step, every single feature
type is encoded as a one-hot vector. The additional embedding layer between
the one-hot encoded input and the convolutional layer maps the sparse asym-
metrical one-hot encoded binary vectors into dense vector representations in a
continuous vector space. This fact contributes to a more efficient training and
helps improving the prediction accuracy while keeping the model consistent at
the same time. The number of dimensions of the vector space is selected based
on the properties of the available data, e.g., the number of unique classes of the
corresponding feature. In our case, each semantic feature is encoded separately,
and therefore the generated vectors may have different number of dimensions.

Raising the number of channels according to the semantic enrichment degree
of our trajectories represents an intuitive way of viewing upon them. Each chan-
nel handles solely the corresponding semantic dimension. For example the first
channel is responsible for the location type, the second channel for the purpose
of visiting that location (activity), the third one for covering temporal informa-
tion and so on. At the end, all channels are merged into a single representation,
flattened and forwarded to the output layer in order to provide a final prediction
about the next semantic location of the user. It should be noted here that the
kernels’ depth should match the channel dimension (5 in our case).

Our CNN has one convolutional, one pooling, a flattening, a fully connected
and a Softmax output layer. A deeper architecture, that is, adding more layers
led in most of the cases to overfitting and reduced the overall performance of
our model. Other than the CNN model in Fig. 1, our model executes a 1-dim
convolution operation instead of the typical 2-dim operation conducted in the
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image classification task. Each kernel convolves each semantic dimension in one
direction only, namely according the chronological order found in the sequence
fed into the model. Thus, the width of each kernel covers the whole row of the
CNN input matrices while its height can vary, constituting a further hyperpa-
rameter of our model. A higher height indicates a kernel, able to observe a higher
number of consecutive locations at the same time, a fact that can be useful when
aiming at capturing long-term dependencies in our data, and vice versa.

5 Evaluation

In order to evaluate our approach, we conducted a 8-week long user study track-
ing 21 users via a tracking and annotation app. The participants of the study
were asked to semantically label each significant stop (location type) during
their movement, as well as to note the purpose of visiting the certain location
(e.g., activity), their companion (if any) and their emotional state by selecting
among the following states: happy, hungry, neutral, sleepy, energetic, frustrated,
stressed, bored, adventurous, ill, sad, angry and shocked. At the end of the
study we end up with approximately 1400 annotated locations covering around
70 unique location types, 53 unique activities, and all 13 emotional states. A
thorough description of the user study can be found in [16].

In order to take time into account, we defined 24 x 7 = 168 hourly slots, which
similar to the other input signals were one-hot encoded first and transformed into
an embedding vector in a next step. However, our evaluation results showed that
taking time into account had a severe negative impact on the prediction outcome
of our model. We saw a similar behaviour in the work of Karatzoglou et al. in [20]
and in [18]. This can be mainly attributed to the small size of our dataset which
makes it extremely hard for the model to find temporal patterns in this 168-slot
temporal granularity. The use of wider time slots, e.g., the use of just daily slots,
couldn’t yield significantly higher scores either, due to the fact that our 8-week
long evaluation dataset contains solely 8 recordings from each day, that is, there
exist solely 8 unique Mondays, 8 unique Tuesdays, etc. For this reason, and
due to space reasons, this evaluation section neglects to refer thoroughly to the
individual results with respect to time. In addition, our users provided very little
information regarding their type of companionship (e.g., relative, friend, etc.).
Solely the fact whether a user was alone or not can be reliably extracted from our
dataset. Therefore, instead of handling the companionship in a separate channel,
we integrated the particular information into the emotional state one-hot vector
by extending it to a further dimension (’0’, when the user is alone and ’1’ when he
is not). Finally and as already mentioned previously in this work, we evaluated
our approach at two semantic representation levels, which will be referred to
as low and high level, with the latter being more abstract and subsuming the
first one. In order to generate these two layers, we built a corresponding location
taxonomy based on the Foursquare venue categorization®. Lastly, a grid search

! https://developer.foursquare.com/docs,/resources/categories



Multi-Channel CNNs on Multi-Dimensional Semantic Trajectories 9

Table 1. Optimal hyperparameter set determined via grid search.

Kernel| Number |Embedding| Dropout |Batch|Learning|Number of|Sequence|Pooling
size |of Kernels| dimension |Probability| size rate epochs length size

6 64 100 0.6 16 0.001 100 10 2

helped us to determine the following optimal hyperparameter configuration for
our model listed in Table 1.

Fig. 3 compares the result from 5 different models at the higher representation
level, a standard 1-channel CNN (Locations) that takes just the current semantic
location as input, a 2-channel CNN that considers the location type and the pur-
pose of visit (LocationédPurpose), a 2-channel CNN that considers the location
type and the emotional state as well as the companionship status of the user (Lo-
cationéCompanionéMood), a 3-channel CNN that takes location type, purpose
of visit, emotional state and companionship (Locationé PurposeséCompanionéd
Mood), and a probabilistic Markov Chain model of 1.order that serves as our
reference. It can be seen that all CNN-based are able to outperform the Markov
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Fig. 3. Accuracy and f-Scores at the higher semantic representation level.

model both in terms of accuracy and f-Score. What stands out in the figure is
that the 2-channel CNN approach that considers the activity of the user (pur-
pose of visit) can clearly outperform the competition. However, this doesn’t hold
for the other 2-channel CNN model. On the contrary, it seems that taking the
user’s mood and emotional state into account affects negatively our prediction
performance. Apparently, our model can’t establish an association between mood
and the users’ movement behaviour, a fact that could partly be attributed to
the small size of our dataset. The more “sophisticated” 3-channel CNN achieves
a similar accuracy to the standard CNN, but a lower f-Score and can’t really
compete with the Locationsé Purposes model. Its results are likely to be related
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to the aforementioned negative impact of the emotional state when this is taken
into account.
Fig. 4 presents the results for the lower semantic representation level. It is
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Fig. 4. Accuracy and f-Scores at the lower semantic representation level.

apparent that all models perform worse than in the higher level. This can be
mainly attributed to the fact that the lower semantic representation brings more
unique classes with it to predict, which makes the learning process of the models
much harder. At the same time, another possible explanation for this might be
the fact that human movement shows stronger regularities at higher levels, e.g.,
a user may often visit a food location after going to gym, regardless whether
this location is an italian or a greek restaurant, a pizza house or a burger joint.
Similar to the high level case, the CNN models outperform in most of the cases
the probabilistic baseline. However, this time, other than in the higher level,
it seems that the additional channels result in a deterioration of our prediction
models. The more channels, the worse the predictive behaviour seems to become.
In general, due to the small size of our data, all of our models had to deal with
massive overfitting issues (see below). Adding a dropout layer while making our
model simpler by reducing the size of our layers could improve significantly our
models, but only to a certain extent.

Fig. 5, 6, 7 and 8 illustrate the training behaviour of our 4 CNN models. We
can see that the greater the number of channels and thus, the greater the se-
mantic enrichment degree of the trajectory, the faster and smoother the training
of the CNN model becomes. Taking additional context dimensions into account
seems to contribute to shorter convergence times and result in a more efficient
training. The 3-channel CNN is characterized by the shortest convergence, while
the vanilla 1-channel CNN straggles with the loss reduction along the whole
training process to the 100th epoch. The benefits of the multiple channel ap-
proach can be clearly seen during the harder learning task, namely at the lower
semantic representation level (see Fig. 6). However, on the other hand, the re-
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spective figure also indicates a certain overfitting effect, as mentioned previously,
that grows with the number of the CNN input channels.
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Fig. 5. Training accuracy and loss curves at the higher representation level. (a):
Location, (b): Location&Companion&Mood, (c): Location&Purposes, (d): Loca-
tion&Purposes&Companion&Mood.

The models presented in this work use 1-dim fixed-sized kernels of size 6. This
number was determined through applying a grid search. The problem when using
fixed-sized kernels is that these are able to capture only data dependencies of
a certain length. Varied-sized kernels as in the work of Kim et al. in [21] could
help overcome this issue and capture the individual properties of each semantic
dimension in our data.

6 Conclusion

In this work, we explore the performance of a Multi-Channel Convolutional Neu-
ral Network (CNN) based approach with respect to its capability in modeling se-
mantic trajectories at different semantic representation levels and predicting the
next semantic location of a user. Moreover, we investigate whether and to what
extend the degree of semantic enrichment, that is, the number of the context
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Fig. 6. Training accuracy and loss curves at the lower representation level. (a):
Location, (b): Location&Companion&Mood, (c): Location&Purposes, (d): Loca-
tion&Purposes&Companion&Mood.

feature dimensions considered in the semantic trajectories, affects the predictive
performance of our model. We considered 5 different semantic enrichment dimen-
sions for our trajectories, the location type, the purpose of visit (e.g., activity),
the time, the user’s mental and emotional state, and his companionship.

We evaluated our model using a 8-week long real-world dataset from 21 users
and compared it to a vanilla Single-Channel CNN and a proababilistic Markov
Chain model that served as out baselines. We could show that raising the seman-
tic enrichment degree of our trajectory data while increasing the corresponding
number of channels at the same time can indeed lead to an improvement in
terms of prediction accuracy and f-Score. This could be particularly seen when
we attempted to model and predict upon semantic trajectories at a higher repre-
sentation level. Furthermore, the results of this work indicate a strong correlation
between the degree of semantic enrichment, the number of CNN channels and the
training behaviour, with our multi-channel based approach being characterized
by generally much smoother and faster converging learning curves.

However, our evaluation also identified some limitations leaning mostly on
certain overfitting effects, which could be mainly attributed to the small size of
our dataset. In our future work, we plan to further explore the use of CNNs in
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Fig. 7. Training f-Score and loss curves at the higher representation level. (a):
Location, (b): Location&Companion&Mood, (c): Location&Purposes, (d): Loca-
tion&Purposes&Companion&Mood.

the semantic location prediction scenario. In particular, we plan to investigate
the use of varied-sized kernels and depthwise separable convolution layers aim-
ing at improving both the predictive performance as well as the computational
efficiency of our model.
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