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Abstract. Taxi is a convenient means of transportation worldwide. Ac-
curately predicting the taxi-demand is crucial for taxi-companies to ef-
fectively allocate their fleet to taxi-stands and reduce waiting time for
passengers thus increasing their overall satisfaction and customer reten-
tion. Nowadays precise information about taxi-rides is available and can
be used to infer the taxi-passenger demand across different locations and
time-points. In this paper, we propose an approach for predicting the
pick-demand of a given taxi-stand, that takes into account not only the
demand-history of the particular stand but it also considers information
from neighboring stands. Our model is an LSTM neural network aug-
mented with information from the spatial neighborhood of the stands.
Experiments with two versions of the taxi demand dataset from the city
of Porto, Portugal show that our approach can provide better predictions
comparing to approaches that do not exploit the neighborhood.

Keywords: taxi-passenger demand · time series prediction · LSTM ·
k-nearest neighbors · deep learning · neural networks.

1 Introduction

Advances in sensor and wireless communication contribute to the development
of intelligent transportation systems, which lead to the transformation of trans-
portation domain. Taxi networks are the important means of transportation
providing the convenient and direct services for passengers. Currently, many
taxi vehicles are equipped with Global Positioning System (GPS) and wireless
communication features that can generate a new source of rich spatial temporal
information.

Intelligent online systems that play a crucial role for real time taxi services
scheduling, taxi sharing, fuel-saving routing, time-saving route finding are al-
ready developed to improve taxi service reliability [19]. Improving levels of pas-
senger satisfaction and maximal profit for taxi providers are the main targets
of taxi companies. Balancing the relationship between the passenger demand
and the number of running taxi vehicles is the most efficient way to maximize
the profit for taxi providers [19]. Knowledge on time and places that is emerged
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the passenger demand can be an advantage for drivers even when there is no
economic availability. The information regarding passenger demand is very use-
ful for drivers in making decision moving to pick up passengers in a particular
region in the city. GPS historical data are the main variable used in prediction
models because it can reveal hidden mobility patterns.

Many researchers were attracted by the mobility data and proposed differ-
ent approaches for taxi-passenger demand prediction. Among the investigated
models are linear regression, ARIMA, feed-forward neural networks and more
recently, deep neural networks. Most of these approaches focus exclusively on the
information of the stand to predict passenger demand in the future. In this paper,
we also exploit information from neigbhoring stands in an attempt to enrich the
information provided to the model, in our case an LSTM neural network. Data
augmentation [25] is a popular technique especially for data-insensive models
like Deep Neural Networks (DNNs); for example, the improved performance on
ImageNet [3] was also attributed to image augmentation using different domain-
specific augmentation techniques like image reflection, translation, cropping and
changing the color palette. Our augmentation approach is based on the spatial
neighborhood of the taxi stands. As our experiments with data from the taxi
network in the city of Porto, Portugal spanning a period of one year show, such
an augmentation is beneficial for the predictive performance of the model.

The rest of the paper is organized as follows: Section 2 overviews the related
work. Our neighborhood-augmented LSTM approach is presented in Section 3.
A detailed experimental evaluation is provided in Section 4. Finally, conclusions
and outlook are summarized in Section 5.

2 Related work

There is a large body of work on traffic-related data, from trajectory querying, to
hotspot detection, clustering, trajectory prediction [1] etc. Hereafter, we focus
mainly on existing works using taxi-data and related mainly to our demand
prediction problem.

A taxi-sharing framework is proposed in [7] that returns the the top-k taxi
recommendations for a passenger request. They select the top−k candidate taxis
for a specific location by considering its neighbors on the traffic network. For
their experiments, they have used the New York city taxi dataset. Luca et al.
[6] proposes a method to find the Nash equilibrium in a taxi sharing fare in case
there are many passengers sharing one taxi in order to save money. For their
experiments, they also use the New York city dataset.

The problem of taxi-passenger demand prediction has attracted the atten-
tion of many researchers recently and as result, several approaches have been
proposed. Most of these approaches rely on well-known prediction models from
the time-series forecasting domain [15]. Kaltenbrunner et al. [11] introduced an
auto-regressive moving average (ARMA) model approach to forecast the num-
ber of bicycles at a station from Barcelona’s bicycle network in order to increase
the stations spatial deployment. Min and Wynter [17] applied another popular
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time-series prediction model, ARIMA (Auto-Regressive Integrated Moving Av-
erage) to predict the speed and volume of traffic in a road network. Luis et al.
[18] [19] introduce an ensemble of experts to predict taxi demand, where each
expert is specialized to a particular trend. In particular, their ensemble consists
of a Time-Varying Poisson model, a Weighted Time-Varying Poisson model and
a ARIMA model. The experiments were conducted on the Porto taxi dataset. J.
Su et al. [26] predicts taxi-passenger demand in urban areas in Hong Kong using
multiple features such as the number of vacant taxi on the roads, the waiting
time, passenger demand, taxi fare as the input for a feed-forward neural net-
work. Recently, TONG, Yongxin et al. [24] presented a multi-dimensional linear
regression model to predict the taxi demand in Beijing and Hangzhou, China.
Their multi-dimensional representation consists of temporal features, spatial fea-
tures, meteorological features, and the combination of these features. Yao et al.
[27] proposed a deep learning framework to model both spatial and temporal
relations by using two neural network model CNN and LSTM to predict taxi
demand in Guangzhou, China.

Contrary to most of the existing works that rely exclusively on taxi-stand’s
own demand history we enrich the data representation of each stand using infor-
mation from neighboring stands. Our intuition is that the demand of a taxi-stand
might be indicative of the demand of some nearby stand as well. Such an aug-
mentation is especially beneficial for data intensive models, our base model is an
LSTM deep neural network model, in order to reduce over-fitting and eventually,
generalization performance.

3 Neighborhood-augmented taxi demand prediction

3.1 Problem definition

Let S = {s1, s2, .., sN} be the set of predefined N taxi-stands in a city. Consider
Xs = {Xs,0, Xs,1, .., Xs,t} to be a discrete time series (based on an aggregation
period of P -minutes) that models the taxi-demand for stand s, that is, the
number of pick-ups for each aggregation period P at s. We refer to this time
series as the demand history of stand s. Our goal is to build a model which
predicts the demand Xs,t+1 for the next time point t+ 1 at taxi-stand s.

Traditional approaches rely solely on the demand history of the stand Xs

for the prediction (we use such methods as baselines for our comparison, c.f.,
Section 4.3). In this work we propose to augment the stand’s demand history Xs

with information from its neighborhood. The intuition behind this augmentation
process is that nearby taxi-stands might display similar demands. Our dataset
seems to justify our intuition: In Figure 1 we show the spatial proximity of the
different taxi-stands (left) vs their demand proximity (right). The demand prox-
imity is evaluated using Pearson correlation and for efficiency reasons, only part
of the history demand. Due to space, we show here only the information for the
first 20 taxi-stands (IDs 1-20), As we can see, when the pairwise spatial distances
are high, an opposite trend is observed in the demand history correlation values.
This can be observed for a variety of taxi-stands, for example, 4, 5 and 8.
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Fig. 1. Spatial proximity (left) vs pickup demand correlation (right) between taxi-
stands (based on dataset D1).

Based on this motivation, we present hereafter the neighborhood-augmented
LSTM model for predicting taxi-passenger demand of a taxi-stand.

3.2 Neighborhood-augmented LSTM model

Our model is an extension of the well known Long Short-Term Memory (LSTM)
networks [8], a special kind of a recurrent neural network (RNN). A common
LSTM unit is composed of a cell, an input gate, an output gate and a forget
gate. The cell remembers values over arbitrary time intervals and the three
gates regulate the flow of information into and out of the cell. There are several
architectures of LSTM units. An LSTM cell takes an input and stores it for some
period of time. Because the derivative of the identity function is constant, when
an LSTM network is trained with back propagation through time, the gradient
does not vanish. The activation function of the LSTM gates is often the logistic
function. Intuitively, the input gate controls the extent to which a new value
flows into the cell, the forget gate controls the extent to which a value remains
in the cell and the output gate controls the extent to which the value in the cell is
used to compute the output activation of the LSTM unit. There are connections
into and out of the LSTM gates, a few of which are recurrent. The weights of
these connections, which need to be learned during training, determine how the
gates operate.

In our approach, we train an LSTM model for each taxi-stand s using not
only its primary demand history Xs but also demand history information from
its k-nearest neighbors. That is, the input to the LSTM is a (k+ 1) dimensional
vector, X ′s. The actual demand values (ground truth) comes from taxi-stand s
and therefore the goal is to fit the neighborhood-augmented LSTM model for
predicting the demand values of taxi-stand s.

The pseudo code of the algorithm is shown in Algorithm 1. Each taxi -stand
has it own LSTM model for training.

In the above algorithm, the normalization step aims to normalize all features
in the [0-1] range. This is an important step for LSTM convergence [13]. In
particular, we use min-max normalization.
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input : Taxi demand dataset; k-number of neighbors
output: Prediction model Ms for taxi-stand s

1 //Data augmentation
2 Xs: the demand history of taxi-stand s up to time t
3 X ′

s ← Xs //extended representation
4 {Neighborss}: the set of k nearest taxi-stands to s
5 for i← 1 to |{Neighborss}| do
6 Xi: the demand history of taxi-stand i
7 X ′

s ← Extend(X ′
s, Xi)

8 end
9 Normalize features

10 //Train on the augmented data
11 Ms ← LSTM(X ′

s)
Algorithm 1: Neighborhood-augmented LSTM model training

The structure of our LSTM network is shown in Figure 2 and explained
hereafter. In this model, time series of stand X with its k − neighbors are used
as the input of the first LSTM layer, followed by a hidden layer before a dropout
unit. Predicted time series Y is the result of our model. The tuning of the
hyper-parameters is discussed in detail in Section 4.4 but the selected values are
mentioned here as well:

Fig. 2. The architecture of the neighborhood-augmented LSTM.

1. Input (X ′s, the extended description of stand s; look back value = 5 (see
Section 4.4.)

2. LSTM (N=200, optimizer = ‘Adamax’, Activation function = ‘tanh’, loss=
‘mean squared error’, batch size = 100 (see Section 4.4.))

3. Full connected LSTM(N=200, Activation function =‘tanh’)
4. Dropout =0.7 (see Section 4.4.)
5. Dense (Activation function = ‘tanh’)

4 Experimental evaluation

We evaluate our approach on the publicly available dataset on taxi-demand from
Porto, Portugal (Section 4.1). The experimental setup and evaluation criteria are
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discussed in Section 4.2. The goal of our experiments is to evaluate the impact
of the neighborhood-based augmentation on prediction quality (Section 4.5) as
well as to study how the “quality” of the neighborhood as evaluated by the
average distance of neighboring stands from the reference stand affects the pre-
dictions (Section 4.6).

Our LSTM approach was implemented using Keras and Tensorflow, whereas
for the rest of the approaches we use the available implementations in Python

4.1 Dataset

We use the dataset from [19] that contains information on taxi trips organized by
a taxi company in the city of Porto in Portugal and was part of the ECML 2015
challenge3. The dataset spans over a period of one year (from July 2013 to June
2014) and contains 1.710.670 records. Each record corresponds to a completed
taxi trip, described in terms of 9 features: (1) TRIP ID: a unique identifier
for each trip; (2) CALL TYPE: It illustrates the way to use the taxi service
and contain one of three possible values: A (the trip is assigned from the call
central), B (the trip is departed from a specific stand) or C (passengers are pickup
from a random street); (3) ORIGIN CALL: the phone number of passengers; (4)
ORIGIN STAND: a unique identifier for the taxi-stand; (5) TAXI ID: a unique
identifier for the taxi driver; (6) TIMESTAMP: Unix Timestamp (in seconds);
(7) DAYTYPE: the daytype of the trip’s start (holiday or any other special day
-‘B’, a day before a type-B day - ‘C’ and other days - ‘A’; (8) MISSING DATA;
(9) POLYLINE: the trajectory of trip. In addition, the dataset also provides the
information of all 63 taxi-stands with their name and GPS coordinates.

Figure 3 depicts the spatial distribution of the taxi-stands in Porto, each
stand is assigned a unique ID from 1 to 63. As one can see, the stands are
not randomly distributed rather their spatial density reflects the demand with
most stands located close to the city center. Moreover, we can see that despite
the aforementioned mandatory regulation there are trips that do not start at
the location of the taxi-stand. The intensity of the color in Figure 3 shows the
density of the starting points; in many cases taxi-stands have the highest local
density but not all trips start at some taxi-stand.

We preprocess the data as follows: Firstly, we sort all records by timestamp
in ascending order. We remove features MISSING DATA and POLYLINE and
we add two new features: LATITUDE and LONGITUDE extracted from the
POLYLINE attribute and describing the coordinates of the starting trip location.
After, we remove instances that have no both taxi-stand ID starting location.
This results in a clean dataset of 1.706.572 completed taxi trips. Contrary to
previous work [18] [19], we create two versions of the dataset for the experiments.
The first dataset (D1) has only the taxi trips with CALL TYPE equal to ‘B’, i.e.,
all trips that are departing from some taxi-stand. This dataset contains 817.861
instances and can be used for building a prediction model that can forecast the
short term demand for specific taxi-stands.

3 https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
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Fig. 3. Spatial distribution of the taxi-stands. Numbers 1–63 indicate the IDs of the
stands.

However, as already mentioned not all trips start from a taxi-stand (i.e.,
the initial location does not match the location of some taxi-stand). Due to
the amount of these trips (888.711 trips, 52.07% of the overall dataset), this
information cannot be easily omitted, rather these trips might play an important
role for the predictions and one needs to consider them for the forecasting.
Therefore, in the second version (D2), we use all records of the clean dataset. For
the trips that do not start from a taxi-stand (i.e., those with a CALL TYPE
equal to ‘A’ or ‘C’), we assign them to their closest taxi-stand based on distance
between the starting location of the trip and the location of the taxi-stand.
Intuitively, we consider the taxi-stand as covering some region in the city with
the its coordination being the center of this region.

The distribution of the trips on the different taxi-stands for the (D1), (D2)
datasets is shown in Figure 4, 5, respectively. For each dataset, we also display
the mean and median demand values. It is easy to observe that there are a large
number of taxi demand in several stands. For example, the most popular stand is
stand 15, which corresponds to the main train station. The top 10 most crowded
stands in D1 account for approximately 46.5% of the total 817.861 passenger
demand. In dataset D2, that proportion is around 36.3% of 1.7M pickups. A
closer look at the top 10 stands via Google Maps reveals that they are all close
to the main train station and the city center with many historical sites, shops
and hotels.
4.2 Experimental setup and evaluation measures

We set the aggregation period at 30 minutes based on the average waiting time
at a taxi-stand as in [19]. We generate the demand history at each taxi-stand by
aggregating the number of pick ups every 30 minutes.
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Fig. 4. Pickup distribution per taxi-stand on D1.
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Fig. 5. Pickup distribution per taxi-stand on D2.

Demand history examples are presented in Figure 6 for taxi-stands 1 and its
spatial neighbor - taxi-stand 49 during one week (from 01 Jul 2013 to 07 Jun
2013). Similarly, Figure 7 describes the demand history of taxi-stand 15 and its
spatial neighbor, taxi-stand 61. In both figures, we use D1 as the data source. As
we can see, the pickup demand series are different and depended on the location
of the taxi-stand. For example, taxi-stand 1 is located far from the city center
(around 5km) whereas taxi-stand 15 is close to the main train station. As a
result, the demand on stand 15 is much higher with over 83.000 yearly pickups
whereas the demand for taxi-stand 1 is only 4.500. Similarly, the taxi demand
on stand 61 (close to stand 15) is around 17.000 pickups whereas the demand for
taxi-stand 49 (close to stand 1) is only 8.000. Except for the differences in the
amplitude of the demand, we can also see differences w.r.t. the temporality of the
demand. For example, both stands 15 and 61 have around-the-clock demand, but
this is not the case for stands 1 and 49. This behavior comprises our motivation
behind the proposed neighborhood-augmented demand prediction model.

In time series prediction, the measurement symmetric Mean Absolute Per-
centage Error (sMAPE) [16] is more meaningful than other measurement, such
as MSE, RMSE. One reason is the proportion values are more comprehensive
than squared errors [21]. As a consequence, in our experiment, we evaluate the
prediction quality of the models for each taxi-stand by comparing the forecast
values with the original ones using sMAPE. However, we still report our results
on MSE measurement as a reference one. In particular, let the true demand
for a taxi-stand s be: Xs = {Xs,0, Xs,1, .., Xs,t} and the predicted demand:

X̂s = {X̂s,0, X̂s,1, .., X̂s,t}. Then sMAPEs is given by:

sMAPEs =
100%

t

t∑
i=1

| Xs,i − X̂s,i |
(Xs,i + X̂s,i)/2

(1)
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Fig. 6. Pickup demand history for nearby taxi-stands 1 and 49.

In Equation 1, sMAPE values fluctuate between -200% and 200% [16]. Flo-
res [5] claims that a percentage error between 0% and 100% is much easier to
interpret, therefore we omit factor 2 in the denominator. Furthermore, due to
possible prediction of negative demand values, we use absolute values in the de-
nominator of Equation 1. Additionally, equation 1 can result in a high error if
the real demand is 0 and the predicted one is non-zero; in such a case, the error
would be 100%. To deal with this issue, we use Laplace correction [10] by adding
a constant c to the denominator. Finally, the modified sMAPEs that is used for
our evaluation is given by:

sMAPEs =
100%

t

t∑
i=1

| Xs,i − X̂s,i |
| Xs,i | + | X̂s,i | +c

(2)

The constant c is user-defined. In our experiments, we use the corrected sMAPE
version (Equation 2) with c = 1.

The aforementioned formulas refer to the error at each stand, we aggregate
the error over all taxi-stands as follows:

sMAPE =

∑N
i=1 sMAPEi

N
(3)

where N is the number of taxi-stands.

4.3 Baselines and method parameter settings

We compare our approach against well-known prediction methods, described
hereafter together with their parameter tuning.

Simple Moving Average: A simple moving average (SMA) [9] is an arith-
metic moving average calculated by averaging the observed values of a time
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Fig. 7. Pickup demand history for nearby taxi-stands 15 and 61.

series in the calculation period. Given a calculation period of q timepoints, the
prediction Xs,t+1 for the next time point t+ 1 is given by:

Xs,t+1 =
1

q + 1

q∑
j=0

Xs,t−j (4)

The number of periods q should be set; when q = 0 this is simply the value
of the last observation. For our experiments, we choose q = 20 using grid search.
We set the range of q from 2 to 24 (equals to 1-12 hours) with step 1. The
selection of q was based on taxi-stand 1 and dataset D1. Taxi-stand 1 is chosen
as the representative stand for tuning as its location is far from the places that
concentrate a huge amount of vehicles, such as the main station or city center.
Moreover, in our experiments the performance of the different models on this
taxi-stand was close to the average values.

Linear Regression In a linear regression model [22] the future value of a
variable is assumed to be a linear function of its past q values, where q defines
the amount of past values contributing to the computation.

Xs,t+1 = β0 + β1Xs,t−1 + β2Xs,t−2 + ..+ βqXs,t−q (5)

For our experiments, we choose q = 15 using grid search, similarly to param-
eter selection for SMA. We apply q = 15 for all 63 different models/taxi-stands.
However, the parameter β0 is adapted to each taxi-stand using grid search with
β0 in the range 10−16 to 106 and step 100.

Random Forest Regression: Random forest [14] is an ensemble technique
averaging the forecasting of a large number of decorrelated decision trees. Ran-
dom forests are built on two main ideas - bagging to build each tree on a different
bootstrap sample of the training data, and random feature selection to decorre-
late the trees. During the forecasting for time point t+1, each tree Bj (j = 1..m)
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provides a prediction Xs,t+1,j . The final prediction of the random forest is the
majority vote of the m trees.

For the experiments, we set the number of trees m per taxi-stand using grid
search in the range 10− 800 and step 40.

XGBoost Regression: XGBoost [2] is an implementation of gradient boost-
ing decision trees designed for efficiency. For the experiment, we use grid search
to select the number of trees of the ensemble (in the range 40 to 600 trees with
step 40) as well as the maximum tree depth (in the range 1 to 4 with step 1).
Parameter selection is done per taxi-stand.

4.4 LSTM parameter settings

The number of neighbors k is selected by grid search based on the representative
taxi-stand 1; the result is a value of k = 15. A similar process is followed for
the rest of the parameters, i.e., they were set using grid search over the data
from the representative stand 1. In particular, the look back value parameter is
select from a range of 2 to 24 (corresponding to 1 to 12 hours in the history)
with step 1. The best look back value = 5 is chosen as it raises best value of
sMAPE. AdamMax and tanh are selected for the gradient descent optimization
algorithm and activation function, respectively as they cause the best sMAPE
values compared to other functions. Additionally, a list of possible candidates
(10, 15,20,25,50,100,200,500 1000) is investigated to find the optimal epoch and
batch size number. The best results were obtained with epoch=25 and batch size
= 100. Furthermore, the range from 10 to 300 with step 10 and the range from
1 to 4 with step 1 were explored to find the best number neurons per layer and
the number of hidden layers, respectively. According to the results, we construct
our model with 1 hidden layer and N = 200 neurons.

Besides, to prevent our LSTM model from overfitting we use the dropout
technique that randomly drop units (along with their connections) from the
neural network during training in order to avoid co-adapting too much [23]. The
dropout rate was set to 0.7, base on our experiments with a range of dropout
values fro 0.1 to 0.9 with step 0.1.

4.5 Taxi-demand prediction quality results

Table 1 summarizes the prediction quality of the different models for dataset D1,
containing trips starting from an actual taxi-stand. In this table, neighborhood-
augmented LSTM is experimented with k = 15.

Table 2 summarizes the results for dataset D2., containing all trips from the
cleaned dataset and after mapping the trips that do not start from a stand to
their closest stand. k = 25 is the number of neighbors used in Neighborhood-
augmented LSTM architecture.

As we can see, our approach, Neighborhood-augmented LSTM, results in
the smallest sMAPE errors, followed by vanilla LSTM. Moreover, the LSTM
models outperform traditional prediction models with linear regression models
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Table 1. Prediction quality of the different models on D1.

Model Training Testing
sMAPE (%) MSE sMAPE (%) MSE

Simple Moving Average 23.34 1.721
Linear Regression 24.37 1.61 24.52 1.765

Random Forest Regression 16.83 0.383 24.25 1.660
XGBoost Regression 23.90 1.391 23.91 1.585

LSTM 18.37 1.659 18.54 1.839
Neighborhood-augmented LSTM 17.32 1.465 17.63 1.682

Table 2. Prediction quality of the different models on D2

Model Training Testing
sMAPE (%) MSE sMAPE (%) MSE

Simple Moving Average 30.33 5.369
Linear Regression 30.78 4.206 31.23 5.988

Random Forest Regression 18.49 0.715 31.03 5.503
XGBoost Regression 30.466 3.605 30.51 5.449

LSTM 27.03 4.16 27.22 6.660
Neighborhood-augmented LSTM 25.88 3.84 26.07 6.444

performing worse in both datasets. The improvement rates are higher for dataset
D1 comparing to dataset D2. A possible reason is the assignment of the trips to
their closest taxi-stands, a process that might have introduced errors. We plan to
investigate alternative assignments in our future work, for example some weight
decay approach based on the distance of the pick-up from its closest taxi-stand
or soft assignments to multiply nearby taxi-stands.

A closer look at the performance of our approach vs the original demand
for the different taxi-stands is presented in Figures 8,9 for datasets D1, D2, re-
spectively. As we can see, two different patterns of performance are shown. In
dataset D1, the performance of the model has large variation, probably due to the
large deviation of pickups among taxi-stand. The picture is different in dataset
D2, where the actual number of pickups appears more balanced across the taxi-
stands.

The variation in the performance of the different prediction models over the
different taxi-stands is demonstrated more clearly in Figure 10, where each box-
plot corresponds to one prediction method and summarizes the sMAPE error
over all stands. As we can see, there is large variation in D1 for all methods. More-
over, traditional approaches like MSA, LR, RF and XGBoost display skewed
performance whereas the LSTM approaches are symmetric so the error over
the different stands follows a normal distribution. Interestingly, and despite the
lower performance of the methods on dataset D2 comparing to D1, the spread
of the error across the taxi-stands is very small for all methods, although there
exist outliers. In case of LSTM-based models, most of the outliers correpond to
stands with better predictions (lower sMAPE).
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Another interesting observation is that the model performs best when the
number of pickups is close to average demand. As an extreme case, the most
popular stand, stand 15 corresponding to the main train station, has the highest
error on both datasets D1 and D2. A possible explanation is that such a stand
is very difficult to model with a single model and one might need to consider
different models for different contexts (e.g. season based, weekdays vs weekends
etc). We leave this as our future work.
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Fig. 8. Real demand vs neighborhood-augmented LSTM error across different taxi-
stands for dataset D1.
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Fig. 9. Real demand vs neighborhood-augmented LSTM error across different taxi-
stands for dataset D2.

4.6 Impact of neighborhood

Our augmentation approach is based on the number of neighbors k parameter.
We evaluate the impact of k on the predictive performance within a range of k
from 1 to 61 and step 4.

The results for both datasets D1 and D2 are shown in Figure 11, Figure 12,
respectively. The effect of k is more pronounced when testing with dataset D1. On
dataset D1 , when k is greater than 15 or the average distance from a specific taxi-
stand to its neighbors is farther than 1km, the performance of LSTM has a light
fluctuation. While these values in dataset D2 are 25 and approximately 1.7km,
respectively. This shows that the proximity taxi-stands have a great influence on
the prediction ability of the model. This is understandable because passengers in
remote locations will be difficult to access the current pick-up stand for a short
time.



14 T. Le Quy et al.

0

10

20

30

40

MA LR RF XGBoost LSTM kNN.LSTM
Prediction methods

sM
A

P
E

 (
%

)

Dataset D1

0

10

20

30

40

MA LR RF XGBoost LSTM kNN.LSTM
Prediction methods

sM
A

P
E

 (
%

)

Dataset D2

Fig. 10. Comparing error distributions for different prediction methods for dataset D1
(left) and D2 (right).
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Fig. 11. Evaluating the impact of neighborhood on the predictive performance of
neighborhood-augmented LSTM model on: D1

5 Conclusions and outlook

In this paper we propose a neighborhood-augmented LSTM model for predict-
ing the pick-demand of a given taxi-stand. Our experiments show that such an
augmentation benefits the predictive performance of the model comparing to an
LSTM approach that exploits strictly the demand history of the taxi-stand as
well as to traditional prediction methods like SMA and regression.

There are several extension possibilities. In this work, we have considered
a global neighborhood threshold k for all taxi-stands. However a more careful
selection of the neighborhood and eventually a stand-tuned k would be more
appropriate in order to account for different demand densities and taxi-stand
densities in the city. Such a tuning could also take into account the data sparsity
in the taxi-stand and grow the neighborhood progressively in order to cope with
the high demand of data-intensive models like LSTM neural networks and their
potential overtfitting.

Another direction is to extend our approach by including other sources of
information regarding the mobility demand in a city, for example, points of
interest, event mentions from social networks [4], traffic patterns [20] as well as
weather conditions [12].
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Fig. 12. Evaluating the impact of neighborhood on the predictive performance of
neighborhood-augmented LSTM model on: D2
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