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ABSTRACT 
Nowadays, human trajectories are enriched with semantic information having multiple aspects, such as by 
using background geographic information, by user-provided data via location-based social media, as well as 
by data coming from various kind of sensing devices. This new type of multiple aspects representation of 
personal movements as sequences of places visited by a person during his/her movement poses even greater 
privacy violation threats. This paper provides the blueprint of a semantic-aware Moving Object Database 
(MOD) engine for privacy-aware sharing of such enriched mobility data and introduces an attack prevention 
mechanism where all potential privacy breaches that may occur when answering a query, are prevented 
through an auditing methodology. Towards enhancing the user-friendliness of our approach, we propose a 
mechanism whose objective is to modify the user queries that cannot be answered due to possible privacy 
violation, to ‘similar’ queries that can be answered without exposing sensitive information. 
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1 Introduction 
Nowadays, the vast amount of spatiotemporal ‘fingerprints’ (i.e. trajectories) of individuals may prove to be 
a dangerous tool in the hands of a malicious user. So far, the scientific community has proposed various 
approaches to protect individual’s privacy ([1][2][8][10][15]). Most of these studies focus on the 
spatiotemporal nature of this data, handling them as sequences of points on a geometric space, without 
considering that such raw data are usually enriched by additional information from the application context. 
However, the increasing need of analyzing mobility data has led to an advanced representation of trajectories 
enriched with contextual data from external data sources, thus transforming raw trajectories to the so-called 
semantic trajectories. A semantically-annotated trajectory, in short semantic trajectory, is considered as a 
sequence of stop episodes (i.e. places where the object remains “static”) and move episodes (i.e. parts of the 
object’s trajectory in between two stops) [11]. Each of them may contain additional annotations (i.g. home, 
cinema, work, etc.). Recently an even more advanced notion of multiple aspects trajectories [7] further 
enriches this kind of data with information coming from any kind of sensing devices (e.g. weather data, 
measurements from health apps, etc.).  

This enriched representation of trajectories may pose even greater privacy violation threats. Consider 
for example a malevolent user who is able to detect places of interest (POIs), where a moving object has 
visited (e.g. hospital, betting office, etc.). This additional knowledge allows the inference of personal 
sensitive information of this specific individual. On the one hand, analyzing semantically-enriched movement 
traces of users can aid decision making in a wide spectrum of applications, but on the other hand, the 
disclosure of such data to untrusted parties may expose the privacy of the users, whose movement is recorded. 
Sharing user mobility data for analysis purposes should be done only after the data has been protected against 
potential privacy breaches. 
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The trend in the literature aims at protecting users’ privacy by releasing an anonymized version of the 
original dataset ([1][2][6][8][10][15]). These approaches assume that in the anonymized dataset a malevolent 
user will not be able to link a specific user with a movement. In this paper, we employ a more conservative 
approach regarding privacy by assuming that data stay in-house to the hosting organization in order to prevent 
any privacy breach. We design a query-based auditing mechanism that can effectively identify and block a 
range of potential attacks that could lead to user identification or tracking, thus controlling the requested 
information that is released to third parties and ensure privacy-aware data sharing.  

In more detail, in this proposal we make the following assumptions to tackle the problem. An enriched 
trajectory database contains, apart from the ‘raw’ trajectories, a number of episodes in which these trajectories 
were ‘fragmented’. Every trajectory corresponds to one or more episodes. Each episode consists of data, 
describing its spatial range, its time range, the ‘kind’ of episode (i.e. Stop/Move) and a potential number of 
tags (annotation) which semantically enrich it. The four different pieces of information mentioned above are 
the data on which every user is able to apply several criteria through his/her query. Every query is a sequence 
of one or more independent sub-queries and each of them includes at least one of the four pieces of 
information previously mentioned as criteria. Every user receives as an answer to his query only the number 
of the trajectories that fulfill the criteria of his query and every such query as well as its answer is stored in 
the database for possible future reuse. It is considered that every annotation (tag) which may exist in the 
database is potentially known to the malevolent user. The proposed mechanism provides an answer only if 
k-anonymity principle is not violated w.r.t the user’s current history. 

Given the above, this paper makes the following contributions: 
• We trace various types of attacks and thus privacy violations that malevolent users may try by 

querying the original enriched trajectory database. 
• We device a query-based auditing mechanism that can effectively identify and block the potential 

attacks that could lead to user identification or tracking. 
• We propose the LENS algorithm aiming at increasing user friendliness of the proposed mechanism 

by modifying the (original) query posed that cannot be answered due to privacy violation, to the 
‘nearest’ query that can be safely answered.  

The rest of the paper is structured as follows: Section 2 presents related work. Section 3 introduces 
different types of attacks of a malevolent user. Section 4 provides the auditing mechanism that handles the 
previously described attacks as well as the LENS algorithm. Finally, Section 5 concludes the paper. 

2 Related Work 
The k-anonymity principle [14] is the most common approach that has been adopted for the anonymization 
of both relational and mobility data. For mobility data, it states that a dataset must be anonymized so that 
every trajectory is indistinguishable from at least k-1 other trajectories.  

Hoh and Gruteser [5] presented a data perturbation algorithm that is based on path crossing. Terrovitis 
and Mamoulis [15] consider datasets as sequences of places visited by users and proposed a suppression 
technique that eliminates the least number of places from a user’s trajectory, so that the remaining trajectory 
is k-anonymous. Abul et al. [1] proposed a k-anonymity approach that relies on the inherent uncertainty of 
moving objects whereabouts, where a trajectory is considered as a cylinder. The anonymity algorithm 
employs space translation and generates clusters of at least k trajectories. Each cluster of k trajectories forms 
an anonymity region and the co-clustered trajectories can be released. To achieve space-time translation, the 
authors proposed W4M [2], which uses a different distance measure that allows time-warping. 

Nergiz et al. [10] proposed a coarsening strategy to generate a sanitized dataset that consists of k-
anonymous sequences. Monreale et al. [8] proposed another anonymization approach that is based on the 
combination of spatial generalization and k-anonymity principle, while in [9] authors faced the problem of 
anonymizing semantic trajectories. To release a safe version of a semantic trajectory dataset, they propose a 
method that generalizes sequences of visited places based on a privacy place taxonomy. 

On the other hand, in several sharing scenarios, many consider that data should stay in-house to the 
hosting organization and only a specific number of authorized users should have access on them. In this way, 
the hosting organization would be able to confront several possible legal restrictions, it could record the 
individuals who use the database and it would update the database whenever appropriate. Despite all the 
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above, a mechanism is, in any case, needed in order to ensure that no sensitive information will be released 
during this process. Along this direction, methodologies have been proposed for disclosure control in 
statistical databases [3], but they support only count and/or sum queries. 
In [4] the authors  proposed an envisioned query engine where subscribed users had restricted access to the 
database to accomplish various analysis tasks and in [12] and [13] a privacy-aware query engine was 
introduced that can protect the trajectory database from potential attacks, while supporting popular queries 
for mobility data analysis. Both approaches deal with spatiotemporal trajectory databases not enriched, as in 
our case. This paper improves the approach in [6]. Finally, in [16] authors proposed a data stream 
management system, aiming at preserving users’ privacy by enforcing Hippocratic principles. 

3 Privacy Attacks 
The main purpose of every attack of a malevolent user is to broaden his knowledge about an individual or a 
situation that interests him. This occurs when the attacker raises his confidence about an event that may be 
related to an individual, who is the ‘target’ or a situation for which he wishes to acquire more specific 
knowledge. Usually, a malevolent user has prior knowledge, i.e. time, place, type of episode and/or semantics 
(or any possible combination) about an individual. 

3.1 Totally Overlapping Queries 
Overlapping queries is a sequence of at least two queries posed by a user, having as a characteristic that the 
criteria of these successive queries are overlapping. We assume that either the queries have the same number 
of sub-queries and their criteria differ only in one dimension (space / time / semantics) or they differ in the 
number of sub-queries that each one contains keeping their ‘common’ sub-queries totally identical between 
them w.r.t. their criteria. 

Spatial Overlapping. In this attack, the identity of a user can be revealed by posing overlapping queries, 
which differ in spatial dimension. The attacker poses a query and if the number of trajectories is at least k, he 
proceeds with one or more queries modifying each time only the spatial dimension, such that every time the 
new query contains the previous one. In fact, the most targeted way for a malevolent user to perform a 
‘successful’ attack is to modify the spatial criterion of only one sub-query (or the same sub-query each time). 

Let’s assume that a user poses query Q1 that contains n trajectories where n³k and then Q2 which returns 
as an answer n+m trajectories, where m<k. The malevolent may conclude that the area corresponding to the 
difference between Q1 and Q2 contains m trajectories which is less than threshold k, thus privacy violation is 
occurred.  

Consider the example depicted in Figure 1. A user poses query Q1: Find people starting from area A 
between [8.00-8.30am] and, then, stop at area B between [9.15-11.30pm]. This query contains two different 
sub-queries, each one able to provide an answer, if posed independently from the other. The same user poses 
query Q2: Find people starting from area A’ between [8.00-8.30am] and, then, stop at area B between [9.15-
11.30pm]. The answer of Q1 contains 7 trajectories while the answer of Q2 contains 8 trajectories. Thus, the 
malevolent can easily infer that only one person appears in the area [A’-A] between [8.00-8.30am] and 
subsequently stopped at area B between [9.15-11.30pm]. By combining this knowledge with additional 
information, the malevolent can identify this person and extract the information that he was alone at that 
specific time and place. 
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Figure 1: An example of two Overlapping Queries  

The same reasoning, described above, can be followed regarding attacks applied by using two or more 
successive queries, which overlap in the temporal dimension.   

Annotations Overlapping. In this case, a malevolent user may attempt to pose successive queries that 
take into account differences regarding only the semantic dimension. Let’s examine the following example 
assuming that k=3. The user poses query Q1 which consists of one sub-query and the answer corresponds to 
a specific spatiotemporal area that includes 7 stop episodes. During Q2 the malevolent maintains the criteria 
of Q1 but also adds tag=‘work’. The output of Q2 contains 6 trajectories. The malevolent can conclude that 
only one entity was not working and he/she may be a workplace visitor.  

Another example, using k=3, is this. Supposing that a malevolent user knows beforehand that a 
previously monitored/recorded person was found in a specific spatiotemporal area and had tag = ‘fun’ and 
this person claimed that he/she was accompanied by another (also monitored) person. The user poses query 
Q1 regarding this area without adding any specific tag annotation and it returns 4 episodes. By posing Q2 the 
user adds tag=‘work’. If the result of Q2 contains 3 trajectories then the recorded person is lying. 

Different Number of SQs. In this attack, a malevolent user poses a sequence of queries which differ 
only in the number of the sub-queries that each one contains. Between two consecutive queries, assume that 
Q1 contains n sub-queries and Q2 contains n+m, where m³1. In order to achieve an attack the malevolent 
should know that his target ‘participates’ in the n sub-queries. Subsequently, the malevolent may compare 
the number of the trajectories corresponding to the query consisting of the n sub-queries in relation to the one 
with the n+m sub-queries. If the difference of the number of trajectories that constitute the answer of these 
two queries is less than k, this may result in revealing sensitive information about the target. 

Consider the following example. The malevolent is aware of a target’s home and working address and 
he/she intends to learn if the target returned at his residence after work. Assume that k=4. The user poses the 
query Q1 consisting of two sub-queries that definitely ‘contain’ the target’s trajectory (how many people 
stayed during the night in area A and during the following day were working in area B). The number of 
trajectories that fulfill Q1 is 5. Q2 contains exactly the same sub-queries with Q1 along with a new sub-query 
that asks for those that returned after work back to area A during the night. If the answer of Q2 returns 4 
trajectories, then there is an 80% probability that the target spent indeed the night at home. This constitutes 
a significantly increased certainty compared to the ‘safety limit’ defined by the k-anonymity threshold. In 
other words, the malevolent should never be more than 25% certain about any situation ‘recorded’ in a 
database protected by a k=4 threshold. If the result again was 5, then he would be absolutely certain that the 
target returned home. We reasonably understand that if the user performed (only) the Q2 from the beginning 
and regardless of the outcome, the result would be the same, but this would not increase his or her certainty 
about the behavior of the target in any way. 

3.2 Multiple Intersecting Queries 
This type of attack requires a sequence of, at least, 3 queries posed by a user. For simplicity reasons, let’s 
assume that we are dealing with queries which comprise only one sub-query. The sub-query’s criteria with 
which an attack can take place in this case are only space and time. We assume that the triple (at least) of the 
queries posed by the user differs either in space or in time each time, thus the malevolent user will be able to 
reach more specific and therefore alarming findings using the semantic database. 

Consider the example depicted in Figure 2. Supposing that k=3, the user initially poses the query Q1 
whose spatial criterion corresponds to area A and it includes 5 episodes/trajectories. Then, he/she poses query 
Q2 whose area corresponds to area B which covers part of area A along with some extra area and it returns 
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3 episodes. If a third query Q3 (area C) corresponds exactly to the remaining part of  area A that does not 
intersect with area B and it includes 3 episodes, then a privacy breach takes place. This is happening because, 
although none of the queries above do not overlap with each other, considering the fact that the 3 out of 5 
episodes of area A are situated in area C, the user will be able to conclude that among the 3 episodes 
belonging to area B the two of them are situated within the area A and only one episode corresponds to the 
part of area B that does not intersect with area A. 

 

Figure 2: An example of three Intersecting Queries 

Similarly, every time a user alters marginally only the temporal dimension between at least 3 successive 
intersecting queries and the spatial dimension remains the same, similar situations may arise. 

4 Attack Prevention 
To prevent the previously described attacks, an auditing mechanism is required to: (a) ensure that k-
anonymity principle is not violated before answering each query; (b) protect certain episodes that may reveal 
sensitive information about entities and should be addressed in a specific way; (c) activate the LENS 
algorithm which allows the appropriate modification of the original query if k-anonymity principle is 
violated, in an attempt to make it acceptable; (d) allow the data owner to monitor and record constantly all 
the queries posed per user as well as the corresponding answers in order to compare them with every new 
query posed to the database. 

4.1 Sensitive Episodes 
Sensitive episodes correspond to known locations that contain particularly sensitive information and can 
possibly expose the identity of a user. We call these locations sensitive for a user as no such information 
should be disclosed to the attackers. In order to deal with user-defined sensitive episodes, the auditing 
mechanism initially does not count them as part of the query’s answer set, but if the number of the non-
sensitive episodes corresponds to at least k trajectories, then these sensitive episodes are allowed to be finally 
incorporated in the answer set. 

4.2 LENS Algorithm 
When a user poses a query to the database, he is willing to gain knowledge about whether there are semantic 
trajectories that are answering the query w.r.t. certain criteria. If the number of the semantic trajectories, 
composing the result set, is less than the anonymity threshold k, the query is not safe to be answered. This 
ensures a first level of privacy protection. 

The main idea of the proposed approach is that, instead of not providing an answer whenever k-
anonymity principle is violated, an auditing mechanism should try to answer the query posed by a user in 
any case. In other words, the mechanism will provide an answer of the most ‘similar’ query to the original, 
that fulfills k-anonymity principle by relaxing conditions via generalization. Query relaxation enlarges the 
search range to include additional information. The output of this process is like a generalized query in one 
or more possible dimensions. Put differently, a user seeks to query an area, but the mechanism resolves it for 
a zoomed-out area that is generalized up to a permissible degree of analysis. 
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The main goal of implementing such an approach is to increase user friendliness and improve database 
functionality. A user can gain information without posing consecutive queries expanding repeatedly the 
criteria set until an answer is provided, because in this case there is an extra computational cost to the database 
and the possibility the user might not be given the best possible answer. To achieve this, the mechanism 
allows the generalization of one or more criteria, of the sub-queries that constitute the original query. The 
generalization may occur in the spatial, the temporal or even the semantic dimension. 

Let’s assume that the potential answer of an initial query Q consists of less than k trajectories. The output 
of the algorithm is a modified query Q’. If the modification process is successful, then the execution of the 
query Q’ will result in at least k trajectories. The number of the sub-queries in both Q and Q’ is of the same 
size. Each sub-query of Q’ is either the same or generalized based on the corresponding sub-query contained 
in Q. 

An obvious approach would be to apply the aforementioned method only in case that a query cannot be 
answered marginally w.r.t. to k-anonymity threshold. A threshold should then be defined. The mechanism, 
based on it, would be activated every time the query could not be answered. But in case the mechanism is 
activated when only few trajectories are missing from the answer set, a privacy breach may occur. A 
malevolent user can easily assume that the modified query does contain certain number of additional 
trajectories within the returned extra area. An obvious solution is to apply LENS algorithm, regardless of the 
number of trajectories needed to reach k-anonymity principle. 

The goal of the algorithm is to modify one or more sub-queries, so that more episodes will be included 
per sub-query. To help the algorithm decide which episode is preferable to be included in the answer of the 
modified query, it should be able to compare the distortion that is caused on each sub-query, when trying to 
select between two or more candidate episodes. A unit, that calculates the distortion caused due to the 
generalization of one or more dimensions on each sub-query, is required. The distortion should be as low as 
possible to limit the generalization to the necessary level w.r.t. the initial query posed by the user.  

The LENS algorithm takes as input a semantic trajectory database, the original query posed by a user 
that cannot be answered, the anonymity threshold k, the distortion limit value dist and a matrix H. The output 
of the algorithm is the modified query along with the corresponding sub-queries.  

The algorithm after the initialization process (lines 1-2) continues with a loop phase where each sub-
query of the original query is executed individually and the trajectories that comprise each one are retrieved 
(line 6). Each trajectory id of these trajectories is inserted into a matrix (H) along with the frequency 
indicating its appearance (freq) in all sub-queries (line 7). When a trajectory id first enters the matrix receive 
1 as the value of freq and its frequency is increased by 1 every time the same trajectory (through its episodes) 
is found within the answer set of the sub-queries subsequently executed. Thus, H is a set of tuples each of 
which contains trajectory id (traj_id), frequency (freq) and the sub-queries (SQi). The maximum value that 
the counter (freq) can take in each record is equal to the number of the sub-queries. Consider as an example 
a query with three sub-queries. The counter for each trajectory in matrix H will receive a value ranging from 
1 up to 3. If the counter receives the maximum value, it means that the episodes of this trajectory have been 
identified in all sub-queries, thus this trajectory can be returned as an answer to the overall modified query. 

Based on matrix H, the algorithm detects the trajectory or trajectories with frequency (i.e., number of 
sub-queries), less than the maximum possible frequency, but at the same time with the highest value among 
the other trajectories in the matrix (line 9). Subsequently, a loop starts that ensures that, if no episode is found, 
the algorithm will search the trajectory that has the subsequent smaller frequency. This loop ends either when 
permissible episodes can be integrated, or if all the remaining trajectories from the matrix have been 
investigated and no episode is found (line 15). To define the most appropriate candidate episodes, the 
algorithm employs a process called Compute_Distortion_Units. A metric function calculates the distortion 
caused in a sub-query in order to be modified and be able to include an episode from the trajectory. In case 
we have a distortion unit greater than a distortion limit (user-defined), the episode takes the tag INF and the 
algorithm proceeds with the next trajectory. Under these conditions the algorithm selects as preferable the 
episode that has the lowest distortion (line 13). 

As a next step, the sub-query is modified in one or more dimensions to contain the episode that 
minimizes the distortion (line 17). The repetition ends (line 19) either if k trajectories have frequency equal 
to the number of sub-queries or if no episodes were integrated. 
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Algorithm 1. LENS 
Input: (1) anonymity threshold k, (2) initial query with sub-queries Q = <SQ1, SQ2,…, SQn>, (3) a 
semantic trajectory database D, (4) distortion limit dist, (5) array H[tr_id, freq, SQ1, SQ2, …, SQn] 
Output: Q’= <SQ’1, SQ’2,…, SQ’n> 
1. Q’ ¬ Q; H ¬ Æ  
2. Ntr  ¬ Count(Q’) 
3. repeat 
4.  Something_Changed ¬ False; 
5.  for i=1 to n do 
6.         Execute_Query(in SQ’i out tr_ids) 
7.         Fill_Help_Table(in H, tr_ids out H)  
8.  end for 
9.  Find_Freq_Position(in H, n out i) 
10.  episode_found ¬ False 
11.  repeat 
12.         Compute_Distortion_Units(in out episode_found, H, i) 
13.         Select_best_candidate_episode(in H, dist, i out tr_id, ep_id) 
14.         i ¬ i+1 
15.  until episode_found or EOF 
16.  if episode_found then 
17.        Embed_New_Episode(in H, tr_id, ep_id, in out SQ’i, Something_Changed) 
18.         Νtr ¬ Count(Q’)  
19. until (not Something_Changed) or (Ntr=k)  
20. Compute_Random_Number(in Rmin, Rmax out R) 
21. Compute_New_Episodes(in Q’, R out Q’) 
22. return Q’ 

 
During the generalization process of the sub-queries, a privacy breach may occur. Let’s assume that the 

spatial dimension of the area that the query covers is enlarged, so as to contain exactly k episodes. The spatial 
generalization should be the minimum possible in order to keep the distortion caused from this process as 
low as possible. To achieve this, most of the episodes that are added will appear in the borders of the modified 
area. The malevolent user, thus, will be more confident that, at least one episode exists, between the query 
posed and the modified query that is finally answered. In order to avoid such a violation, the modified query 
is expanded on each side by a randomly generated percentage R (line 21). Finally, we get as output the final 
modified query along with its sub-queries (line 22). 

4.3 Query Auditing 
The main goal of the Query-Auditing algorithm is to prevent the semantic database from answering a query 
to the user when it is possible that he may acquire further knowledge of a situation or a specific individual 
whose trajectories are stored on the database than he might have had before posing the query. The only way 
to avert this is to deny answering the query. In order to apply such a mechanism, it is necessary to keep the 
past user’s queries along with the corresponding answers stored in the database.  

Related works do not provide any answer when two queries posed by the same user are overlapping, 
aiming to prevent any privacy violation. In order to increase user friendliness and system functionality, we 
argue that the previous approach is very conservative and the algorithm should proceed to further examination 
before denying an answer. In other words, we find that it may be very strict to deny an answer without 
previously examining the extent that every query, ready to be answered, is overlapping to every query 
previously posed by the same user. More specifically, since each user has the right to receive an answer every 
time the k-anonymity principle is not violated, we argue that he still has the same right even if his current 
query overlaps a previous one, as long as the difference of these two queries’ answers (i.e. the number of 
trajectories contained in each answer) equals or is greater than k threshold.  

However, after applying this policy to the auditor, this may lead to a new type of potential privacy 
breach. More specifically, let’s consider the following example assuming that a k=2 threshold is applied. 
Supposing there is a query Q1 having only one sub-query and its temporal criterion defined between [8.00-
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11.00am] and it contains 5 trajectories. Next, if the same user poses a query Q2, whose temporal dimension 
is [8.00-9.00am] and it contains 2 trajectories, the auditor should allow it to be answered, because the 
difference of these two answers is greater than k. Subsequently, if the same user tries a third query Q3 whose 
temporal dimension is [9.00-10.00am] which contains also 2 trajectories, it seems that it should also be 
answered because although it overlaps (only) with Q1, their difference is still greater than k. If so, a privacy 
violation will take place because this specific user will eventually get to know that between [10.00-11.00am] 
only one entity has been recorded.  

The solution we propose is to create dummy queries stored in the database along with the actual queries 
previously posed by the user and, in any case, the database will treat them as real queries posed in the past 
by him. Regarding the previous example, when the auditor replies to query Q2, we create a dummy query 
with temporal criterion defined between [9.00-11.00am]. This would prohibit the user from querying Q3 
successfully. Then, we present specific examples, regarding the different types of overlapping queries that 
the auditor has to deal with. 

Spatiotemporal Overlapping. Let’s assume that k=3. A user poses initially the query Q1: A®B®C (i.e. 
the query consists of 3 sub-queries) and subsequently the query Q2: A®B®C’. The sub-queries C and C’ 
are overlapping. The auditor examines the number of trajectories corresponding to the aforementioned 
queries and, let’s assume, that Q1 is satisfied by 7 semantic trajectories while the Q2 by 4 ones. The difference 
of these two queries is equal to k, so the user will be allowed to receive answers for these two successive 
queries. However, in order to avoid future violation by the specific user, the auditor has to construct a fake 
query that will be stored in the database and corresponds to the spatiotemporal difference of the two queries 
Q1 & Q2 regarding their last sub-queries C & C’, before releasing the final answer (i.e. Qfake: A®B®[C∩C’]). 
Thus, if the same user attempts a third actual query (4th, including the fake one) Q3: A®B®C’’ and C’’ 
totally overlaps [C∩C’], the same comparison between the number of trajectories of Qfake & Q3 will take 
place and if k-anonymity is still satisfied, then it will be answered too and a new fake query will be created, 
and so on. A similar approach to this also applies to multiple intersecting queries. 

Annotations Overlapping. Our approach for a friendlier handling of queries in the case of overlapping 
tags is (see Sec. 3): 

‖Q[tag	is	null]‖	–	/‖Qs[tag	is	not	null]‖ 	≥ k 

Before answering the query, the auditor compares the number of trajectories corresponding to the query, 
without containing any specific tag, with the sum of the number of trajectories corresponding to all the other 
queries which contain tag(s) in their criteria and have already been answered. Obviously, all of the 
aforementioned queries are totally identical except only for the annotation criterion of only one sub-query 
and we note that the inequality also includes the query the auditor is examining at that time. If this inequality 
is true, then the auditor proceeds in answering the current query. There is, also, no need for generating a fake 
query when answering such queries. 
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Algorithm 2. Query-Auditing 
Input: (1) anonymity threshold k, (2) initial query with sub-queries Q = <SQ1, SQ2,…, SQn>, (3) a 
semantic trajectory database D, (4) distortion limit dist, (5) user id uid 
Output: FQ 
1. FQ ¬ Q; QD ¬ Æ  
2. Remove_Sensitive_Episodes(in out FQ) 
3. if ||FQ||<k then 
4.     LENS(in k, FQ, D, dist, H out FQ) 
5.     if ||FQ||<k then  
6.         return false 
7. for each Qi ∈ D where user_id=uid do 
8.     for each SQj ∈ Qi do 
9.         for each SFQm ∈ FQ do 
10.             if SFQm overlaps SQj then 
11.                 Check_Suspicious_Query(in FQ, Qi out Is_Suspicious, Dummy_Query_Needed) 
12.                 if Is_Suspicious then     
13.                     if 45F75 − ‖Q9‖4 ≥ k	then 
14.                         if Dummy_Query_Needed then                      
15.                             Create_dummy_query(in FQ, Qi out QD) 
16.                     else 
17.                         return false 
18.         end for 
19.     end for 
20. end for 
21. Add_Sensitive_Episodes(in out FQ)    
22. D ¬ D U QD 
23. return FQ 
 

Different number of SQs. Let’s assume that k=3 and a user poses the query Q1: A®B®C®D and it is 
satisfied by 4 semantic trajectories. The same user poses Q2: A®B®C and the answer contains 7 trajectories. 
Since the difference of these two queries that corresponds to the query A®B®C®not [D] is equal to k, no 
privacy violation can be caused. In fact, in this case there is no need for generating a fake query. 

Algorithm’s Description. The input of the algorithm is the anonymity threshold k, the initial query of 
the user along with the corresponding sub-queries, a semantic trajectory database D, the distortion limit value 
dist and the id of the user posing the query. The algorithm first executes query Q and gets the number of 
trajectories that make up the answer set (line 1). Then, the episodes that are considered as sensitive are defined 
and removed from it (line 2). If the number of trajectories is less than k, LENS algorithm, previously 
described, is called to modify the original query in an effort to provide an answer (lines 3, 4). If LENS 
algorithm cannot manage to modify the query w.r.t. a distortion threshold, no answer is provided to the user 
and the algorithm ends (lines 5, 6). On the contrary, if the original query Q or the modified query FQ has 
equal or more than k trajectories, the auditing mechanism continues to further investigate this query based on 
user’s history.  

The auditor proceeds by comparing every sub-query of FQ with all the sub-queries that belong to queries 
posed from the user in the past. Every time two sub-queries are overlapping w.r.t their spatial, temporal or 
semantic dimension (including the case where these two are just intersecting each other) or they are totally 
identical, a procedure Check_Suspicious_Query is called to examine whether query FQ is, in fact, a suspicious 
query compared to the current query Qi which is a previously posed query stored in the Database (lines 10-
11). If so, the auditor calculates the difference of the number of trajectories belonging to the corresponding 
queries (lines 12-13). If it is equal or greater than k (which means that the query will be answered in any case) 
and if the procedure Check_Suspicious_Query has previously determined the need of creating a dummy 
query, the auditor calls the procedure Create_dummy_query which creates the query QD (lines 14-15). 
Otherwise, the algorithm ends and no answer is provided to the user (line 17). Finally, if the query is to be 
executed, any sensitive episodes, that have been initially excluded, are added to the answer, the dummy query 
is stored in the database and the final answer is returned to the user (lines 21-23). 
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5 Conclusions 
In this paper, we proposed an envisioned query engine able to provide safe answers to queries posed by users 
in semantic trajectory databases. Different types of privacy attacks have been addressed and an effective 
auditing mechanism able to prevent privacy breaches has been proposed. We subsequently introduce LENS 
algorithm which is able to modify an initially inacceptable query to the ‘closest’ one that can be safely 
answered, thus increasing the user friendliness of the engine. In the future, we plan to support multiple users 
access of the MOD. 
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