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ABSTRACT
In this paper we present a Semantic Indoor Trajectory Model
aimed at supporting the design and implementation of context-
aware mobility data mining and statistical analytics methods.
Motivated by a compelling museum case study, and by what we
perceive as a lack in indoor trajectory research, we are interested
in combining aspects of state-of-the art semantic outdoor trajec-
tory models, with a semantically-enabled hierarchical symbolic
representation of the indoor space, which abides by OGC’s In-
doorGML standard. We drive the discussion on those modeling
issues and details that have been overlooked so far or where
our approach deviates from typical practices. We illustrate the
modeling part with instantiations from the Louvre Museum in
an effort to provide a pragmatic view of what a Semantic Indoor
Trajectory Model ought to represent and ideally also how.

1 INTRODUCTION
It has long been of paramount importance for museums to “know”
their visitors, meaning to study and understand their motivations,
expectations, engagement, and satisfaction. In this regard, multi-
media guides offering Location-Based Services (e.g. way-finding,
contextualized content delivery) are becoming an invaluable tool
for museums, since they provide them with access to an unprece-
dented wealth of visitor movement data. Similar opportunities
have appeared in other domains of indoor human mobility such
as retail stores, arenas, hospitals, airports, universities [16].

So far, trajectory-based humanmobility data analytics research
has solely focused on outdoor trajectories, driven by the fact that
Geographic Information Science (GIS) has traditionally only sup-
ported outdoor spatial information. This type of research differs
considerably in indoor environments, mainly due to interior ar-
chitectural components constraining (or otherwise affecting) the
way people can move. For example, an indoor trajectory model
has to consider multiple ways of entering a room, floor changes,
specific locations of entrance/exit to/from the building, sensor
coverage gaps and/or sensor detection area overlaps, movement
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data of varying spatial granularity, and other peculiarities. In ad-
dition, indoor trajectory analytics may gain from avoiding cum-
bersome calculations over geometric representations of space
and objects within it, that are typical of outdoor environments.
Instead, operations such as intersection, containment, and prox-
imity can be simplified in order to prioritize the non-geometric
aspects of movement [15], instead of metric aspects often focused
on Euclidean distances from potential targets. In fact, reasoning
about space without precise quantitative information has been
at the core of Qualitative Spatial Relations research [9].

Moreover, in order to reason about movement in information-
ally rich domains, a trajectory model must also account for mul-
tiple types of contextual and semantic information. As identified
by [22] and further explored in [4, 5], there are three fundamen-
tal sets pertinent to movement, representing the “where” (set of
locations), “when” (set of instants or intervals), and “what” (set of
objects) of spatiotemporal data. This is true across applications.
Distinguishing between semantics of time, semantics of places,
and semantics of moving objects, in addition to the semantics of
movement itself could empower a synergistic interplay between
different types of semantics. Such semantic information can be
derived either from the moving object’s environment or from
external data sources. It can then be used to add a meaningful di-
mension to “raw” trajectories. Unfortunately, semantic trajectory
models have - to a large extent - targeted outdoor settings.

This has resulted in an emphasis on the enrichment of GPS
data, the identification of stops and moves, the identification of
transportation means, and other conceptual modeling issues that
are either not interesting or not transferable in indoor settings.
On the other hand, the adoption of some modeling approaches,
such as the segmentation of trajectories into episodes and the
use of semantic annotations, seems to be promising.

In this paper, we present a new model for spatiotemporal
indoor trajectories enriched with semantic annotations. The pro-
posed model makes use of an indoor space modeling framework,
instead of assuming 2D coordinate data as is the norm. To this
end, on the one hand, we identify certain limitations of state-
of-the-art conceptual semantic (outdoor) trajectory models and
propose ways to overcome them, and on the other hand we dis-
cuss different indoor space modeling approaches and the choices
that we made. Equally important, the new model is developed in
order to support mining and analysis tasks.



The rest of this paper is divided as follows: Section 2 presents
an overview of the related work and its limitations with regards
to indoors. Section 3 introduces our trajectory model. Section 4
introduces the Louvre case study and the corresponding model
instantiation. Finally, Section 5 concludes with the key issues
addressed in our model and a brief description of the types of
analytical tasks that it supports.

2 RELATEDWORK AND BACKGROUND
In this section, we describe the state-of-the-art in modeling in-
door spaces and (outdoor) semantic trajectories.

2.1 Indoor Space Models
In order to represent movement phenomena in terms of trajec-
tories, first a formal spatial model is needed to provide an ab-
straction of their physical environment. Every trajectory model
(TM) proposed in the literature, either explicitly or more usually
implicitly, uses a certain model of location and therefore space. In
this regard, a fundamental distinction exists between quantitative
and qualitative spatial representation approaches. The former are
preferable when precise spatial information is important, while
the latter when it is unnecessary or unavailable [9].

A qualitative spatial representation formalism, coupled with
qualitative relations between spatial objects and qualitative rea-
soning about spatial knowledge, constitutes what is known as
Qualitative Spatial Reasoning (QSR) [23]. Two of the most wide-
spread qualitative spatial calculi are RCC (Region Connection
Calculus) [10] and n-intersection [13]. In specific, RCC-8 and
4-intersection (as well as other variants) result in the definition
of eight binary topological relations: “disjoint”, “touch” (“meet”),
“overlap”, “contains” “insideOf”, “covers”, “coveredBy”, “equal”
[14]. From a more applied perspective, most indoor spatial data
models can be classified into geometric ones and symbolic ones
[1]. The former focus on representing the geometry of indoor
features using primitives such as points, lines, areas, and volumes.
The latter focus on representing the ontological aspects of spatial
units and the topological relationships between them, maintain-
ing a more abstract view of indoor space [2]. Hybrid models
represent both symbolic concepts and geometric properties.

Furthermore, a line of research works on indoor space model-
ing (e.g. [6]) has culminated into the development of IndoorGML
[19], an OGC standard aimed at representing and allowing the
exchange of geoinformation for indoor navigational systems.
IndoorGML’s core module considers an indoor space as a set
of non-overlapping cells that represent its smallest organiza-
tional/structural units: S = {c1, c2, ..., cn }, ci ∩ c j = ∅. Techni-
cally, IndoorGML describes a hybrid indoor space model and not
a TM, but it can be used in support of one. More specifically, the
cell space and the topological relationships between its objects
are represented by one or more Node-Relation Graphs (NRGs). In
particular, the Poincaré duality provides the means of mapping
the physical indoor space (embedded in a 2D/3D Euclidean primal
space) into an adjacency NRG (in the corresponding dual space).
Therefore, a cell (e.g. room) becomes a node and a cell bound-
ary (e.g. a thin wall) becomes an edge. The respective formal
terminology is summarized in Table 1. If cell boundary semantics
are also taken into account (e.g. doors vs. walls, ramps) then a
connectivity and/or an accessibility NRG may be derived as well.
Connectivity suggests that there exists an opening in the com-
mon boundary of two cells. Accessibility additionally suggests
that the opening is traversable by the moving object (MO).

Figure 1: A 2-level hierarchical graph representing the cen-
tral part of the 1st floor of the Louvre’s Denon Wing.

Moreover, IndoorGML’s Multi-Layered Space Model (MLSM)
is the description of multiple interpretations of the same physical
indoor space, through the instantiation of multiple cell decom-
positions and corresponding NRGs. Each NRG is treated as a
separate graph layer. Nodes belonging to different layers are
connected via inter-layer “joint” edges. While intra-layer edges
represent either adjacency, connectivity, or accessibility relations
between non-overlapping cells, joint edges represent potential lo-
cations where a physical object might actually reside. Therefore,
given that a physical object may be in only one cell of each layer
at any given point in time (called the “active” state), joint edges
express all the valid active state combinations (called “overall”
states) and are derived by pairwise cell intersection. Equivalently,
a joint edge represents any of the eight binary topological rela-
tionships derived by the n-intersection model [13], except for
“disjoint” and “meet”. In Figure 1 for example, if a visitor is inside
the hall represented as node 5 in layer i + 1, then the joint edges
suggest that he can only be in either 5a, 5b, or 5c in layer i .

The MLSM can be used to represent spatial hierarchies but it
is unclear how its flexible cell subdivision mechanism is ought to
be used: each node may be split independently of the rest which
favors ad-hoc hierarchical modeling approaches. For instance,
in the Louvre example of Figure 1, we may want to split nodes
4 and 5 into smaller cells to take advantage of more precise
localization data available there. It is however unclear, whether
or not we should also split 1,2,3 correspondingly, or whether
or not we should split 4 and 5 in the same layer (as depicted).
These indoor space modeling issues have been identified in [17]
and [11], but the former only provides some general partitioning
criteria (e.g. splitting cells that have multiple properties or that
are too big), while the latter categorizes such criteria (geometry-
driven, topology-driven, semantics-driven, navigation-driven)
but is more interested in furnished 3D indoor spaces, rather than
2D multi-floor spaces. However, such space modeling issues will
eventually affect the spatial granularity of the symbolic TM.



N-intersection Primal Space (2D) Dual Space (NRG) Dual Space (Navigation)
(spatial) region1 cell/“cellspace” node state
(region) boundary (cell/“cellspace”) boundary (intra-layer) edge transition
“overlap” / “coveredBy” / “inside”
/ “covers” / “contains” / “equal”

binary topological relationship
(between cells/“cellspaces”)

(inter-layer) joint edge valid active state combination /
valid overall state

Table 1: Closely related terms, often used interchangeably under the context of indoor space modeling and IndoorGML.

2.2 Semantic Trajectory Models
In the last decade, accounting for the semantics of movement
has received a lot of attention in the trajectory data modeling
and analytics literature. Pivotal to this has been the proposal
to view a trajectory as “the user-defined record of spatiotem-
poral evolvement of the position of a MO, during a given time
interval of its lifespan, and in order to achieve a certain goal”:
[tbeдin , tend ] → space [24]. In the same work, a purposefully
generic way of semantically segmenting a trajectory into stops
and moves was also established, leaving its implementation to
be specified at the application level. For example, [3] adopted
the conceptual TM of [24] and defined stops based on temporal
stay value thresholds. Similarly, [7] adopted the conceptual TM
of [24] and associated stops with important visited places, before
extending it with fundamental data mining concepts in order to
support frequent/sequential patterns and association rules.

More recently, in [4, 5], the authors propose a general con-
ceptual modeling framework aimed at connecting the analysis
of movement data with its spatiotemporal context, which is de-
fined as the physical space and time where movement takes place
together with the objects and events that co-exist in it. Their
framework exhaustively categorizes the types of information
that can be represented by movement data. First, it breaks move-
ment down to its most essential elements: the set of locations S
(space), the set of time unitsT (time instants or intervals), and the
set of objects O (physical and abstract entities). Their elements
may have properties represented as spatial, temporal, or thematic
attribute values, which in turn may involve other elements of
S , T , O . The framework does not address semantic modeling,
apart from proposing dynamic thematic attributes, said to repre-
sent any attribute available in the movement data or “any other
existing or conceivable thing”, which can be thought of as the
equivalent of semantic annotations used in other semantic TMs.

SeMiTri [25] is an application-independent framework for
the semantic enrichment of raw GPS trajectories in the form
of annotations based on spatial and temporal properties of raw
data streams. The enrichment happens, either at a low level via
the notion of a “semantic place” spi ∈ P = Pr eдion ∪ Pl ine ∪

Ppoint , which represents a meaningful geographic object (with a
Region Of Interest (ROI), a Line Of Interest (LOI), or a Point Of
Interest (POI) as its extent), or at a high level via the notion of an
“episode”, the abstraction of a subsequence of the spatiotemporal
trajectory’s points that are highly correlated with respect to some
identifiable spatiotemporal feature (e.g. velocity, time interval).

The conceptual semantic TM proposed by [21] is similarly
structured as a sequence of potentially annotated timestamped
coordinate positions or episodes. An annotation is defined as any
additional data (captured or inferred) that enrich the knowledge
about a trajectory or any part thereof. It can be an attribute value,
a link to an object, or a complex value composed of both. Also, an
“episode” is defined verbatim from [25] as “amaximal subsequence
of a semantic trajectory, such that all its spatiotemporal positions
comply with a given predicate, bearing on the spatiotemporal

characteristics of the positions”. Lastly, temporal gaps in the
movement track greater than the sampling rate of raw data, are
said to be either accidental (“holes”) or intentional (“semantic
gaps”), in which case their list makes part of the main TM.

Finally, CONSTAnT [8] is a conceptual semantic TM that re-
sembles the TM of [21], but supports more strictly defined types
of trajectory semantics. A trajectory T is defined as an ordered
list of timestamped (x ,y) coordinate points. Enriched with con-
textual information, a semantic trajectory is defined as the tuple
(tid,oid, S,д,d), where oid is the MO identifier, S is a list of se-
mantic subtrajectories, д is the general goal of the trajectory (i.e.
the reason/objective of the movement), and d is the device that
generated the trajectory. д is required and S must contain at least
one semantic subtrajectory, which means that a semantic trajec-
tory must have exactly one goal and at least one meaningful part.
Moreover, a semantic subtrajectory s ⊂ T is defined as a list of
consecutive semantic points, that corresponds to at least a goal,
or a means of transportation, or a behavior, if not to multiple
ones. Lastly, a semantic point p ⊂ s is defined as a coordinate
point, annotated with a set of environments related to where it
was collected and/or with a set of places where it is located.

More generally, in the earlier semantic TM literature, seman-
tics were largely exhausted in the names and types of the ge-
ographic places of interest related to the MO’s physical stops.
Efforts have since been undertaken to integrate movement on-
tologies, linked open data, information extracted from social net-
work platforms, or complementary case-specific datasets, with
spatiotemporal trajectory data. But they have largely concerned
outdoor contexts, as made evident by the terminology (e.g. “trav-
eling objects” [24]) and definitions introduced. On the contrary,
a Semantic Indoor Trajectory Model (SITM) needs to at least con-
sider the building’s topology and space semantics. The interior
of buildings is typically divided into clearly delimited spatial en-
tities such as rooms, halls, floors. Thus, its physical segmentation
already holds a considerable amount of semantic information.

3 SEMANTIC INDOOR TRAJECTORY
MODEL

In this section, we define a semantic indoor trajectory model
(SITM) aimed at supporting:

• all types of indoor settings;
• both human and inanimate moving objects (from hereon
both referred to as MOs);

• mining and analysis applications using both statistical and
reasoning approaches in order to provide insight both at
the individual and collective level.

3.1 Model Components
The proposed SITM mainly consists of a semantically enriched
sequence of an individual MO’s spatiotemporal presence, but also
makes use of a semantically enriched representation of indoor
space.



The semantically enriched representation of indoor space that
we propose is represented as a layered multigraph. Its nodes
symbolically represent indoor spatial regions, and its edges repre-
sent topological relationship information between those regions.
Static semantic information about the regions is represented
through node classes and attributes as well as node-edge group-
ing into layers. The proposed representation is compatible with
OGC’s IndoorGML standard and can be viewed as an extension
of it. It is described in Subsection 3.2.

The semantically enriched representation of an individual
MO’s trajectory that we propose is a couple consisting of a trace
of consecutive presence intervals inside the indoor regions rep-
resented by the graph’s nodes, and a set of semantic annotations
describing the trajectory in its entirety. It is semantically enriched
and uses the above indoor space representation. It is described
in Subsection 3.3.

3.2 Indoor Space Modeling
Based on the modeling framework provided by the IndoorGML
standard and in particular its Multi-Layered SpaceModel (MLSM),
we represent a 2D multiple floor (i.e 2.5D) indoor space as a
layered multigraph G = (V ,E) where

V =
m⋃
i=0

Vi

and

E =
m⋃
i=0

Eacci ∪ Etop

G comprisesm + 1 different layers of nodes and edges, each
constituting an accessibility Node-Relation Graph (NRG):

Gi = (Vi ,E
acc
i )(0 ≤ i ≤ m)

that corresponds to a different decomposition of the indoor space.
On the one hand, nodev ∈ Vi represents a cell belonging to the i-
th layer and an edge e ∈ Eacci ⊆ Vi×Vi represents the accessibility
between two cells of the i-th layer. On the other hand, a joint edge
e ′ ∈ Etop ⊆ Vi ×Vj represents a binary topological relationship
between two cells of different layers (i , j). Figure 2 illustrates an
example of such an indoor space graph representation consisting
of five hierarchical layers (detailed in Section 4), but in general
G need not be strictly hierarchical.

In the proposed indoor space model, we adopt IndoorGML’s
implicit assumption that each node belongs to only one layer:
m⋂
i=0

Vi = ∅. If a node is relevant to multiple layers then it is es-

sentially replicated in each one and all the copies are connected
to each other via “equal” joint edges. Moreover, assuming that
cells represent the physical reality of planar space (instead of a
conceptual space) and that same-layer cells do not overlap at all,
an intra-layer edge e ∈ Eacci actually presupposes the “meet” rela-
tion between its two cells, because they need to share a common
surface for the MO to be able to physically transition between
them. At the same time, as explained in Section 2, a joint edge
e ′ ∈ Etop signifies that either one of the “overlap”, “contains”,
“insideOf”, “covers”, “coveredBy”, or “equal” topological relations
holds between the two cells that it connects. Thus, intra-layer
edges and inter-layer edges are always of a different type, and
therefore G can be considered as an edge-coloured multigraph
which can be mapped to a multilayer network [18].

An important modeling decision is whether G is directed or
not. Although IndoorGML does not explicitly assume either case,

it considers undirected edges in all of its examples. As far as
intra-layer edges go, we can think of “adjacency” and “connec-
tivity” as being symmetric relations. However, “accessibility” is
not symmetric since often indoor movement is only unidirec-
tionally possible due to technical, safety or other limitations. In
Figure 1 for example, room 4 (“Salle des Etats”) houses the “Mona
Lisa” and accommodates a vast number of visitors on a daily
basis. To facilitate their flow, entering it from room 2 is often
prohibited by the museum personnel while exiting it that way is
allowed. Therefore, we assume directed accessibility NRGs. As
far as joint edges go, while “overlap” and “equal” can be thought
of as symmetric binary relations, “contains” and “covers” can not.
Therefore, we also assume directed joint edges (Figure 2). If we
wanted to simply model intersection non-emptiness, instead of
the specific nature of the relation, then undirected joint edges
would suffice.

In our model, we define a layer hierarchy as k ≥ 2 ordered
layers Gi (0 ≤ i ≤ k) of G that are only consecutively connected
by joint edges. Similar to [17], we exclude “overlap” relations
from layer hierarchies, but contrary to it, we also exclude “equal”
relations to prohibit node repetition and instead favor a proper
hierarchy. Instead of [17]’s “inside” and “coveredBy”, we assume
“contains”, “covers”, and a corresponding top to bottom joint edge
direction. Furthermore, we account for the fact that virtually
any indoor environment is characterized by a basic three-layer
hierarchy consisting of: a “Building” layer, a “Floor” layer, and a
“Room” layer. The latter is loosely named as it may actually con-
tain any type of room-level navigable spatial cell, such as rooms,
chambers, halls, lobbies, cellars, terraces, corridors, hallways, big
staircases. Therefore,G includes k layers representing static hier-
archical levels of spatiosemantic granularity (3 ≤ k ≤ m). Other
layers are optional and may also integrate with this core layer
hierarchy.

It is thus evident that there can be layer hierarchies that com-
prise either topographic layers, or semantic layers, or both. Our
core hierarchy is indeed a mixed one. The “Building” and “Floor”
layers are spatially defined, since the architectural structure alone
is mostly enough to determine which space constitutes a building
and which space constitutes a floor. The “Room” layer is predi-
cated both spatially and semantically: it should not contain cells
of vastly different sizes, but it may contain cells whose bound-
aries are not necessarily physical (e.g. functionally independent
subspaces of a big hall or of a great room).

Additionally, two optional layers are proposed for typical cases:
a “Building Complex” root layer and a “Region of Interest (RoI)”
leaf layer (Figure 2). We define the “Building Complex” layer
to represent the indoor space of a site comprised of multiple
buildings, such as a hospital spanning multiple attached wings
or a university campus spanning multiple independent edifices.
We define the “RoI” layer to represent navigable sub-room level
spatial cells of application-specific interest, such as “you are here”
map installations in a shoppingmall or individual exhibit displays
in a museum (Figure 4). The “Building Complex” and “RoI” layers
are only relevant per case. When present, they can be properly
integrated into the aforedescribed core layer hierarchy: “Building
Complex” → “Building” → “Floor” → “Room” → “RoI”. Then, a
“Floor” object describes a single building’s floor level (e.g. FloorA1
, FloorB1 in Figure 2). Ad-hoc refinements of the hierarchy are
still possible in extremely particular cases (e.g. architectures with
indistinguishable floor levels) as long as joint edges represent
“contain” or “cover” relations and do not skip layers.



Figure 2: The required core layer hierarchy extended with a multi-building root layer and an intra-room region layer.

A static predefined layer hierarchy (e.g. Figure 2), as opposed
to local ad-hoc node subdivisioning (e.g. Figure 1), allows a struc-
tured reasoning about the trajectories at multiple levels of gran-
ularity. By only allowing “proper part” types of relationships,
we allow inference of a MO’s location at all levels of granularity
above the detection data level. This in turn allows developing rea-
soning mechanisms to cope with missing or uncertain location
information. It also enables the identification of certain types of
movement patterns at the “room” level for instance, and at the
same time of other types of patterns at the “floor” level, from
the same trajectory dataset. Finally, hierarchies simplify the con-
ceptual indoor space data model thanks to the transitivity of
parthood (isomorphic to set inclusion) in classical mereology: a
layer hierarchy only needs to connect to other layers or layer hier-
archies at the lowest possible level, since a relation (e.g. “overlap”)
between two nodes will also hold between their predecessors.

3.3 Semantic Indoor Trajectory Modeling
Automatically collected raw movement data typically consist
of spatiotemporal records, out of which individual trajectories
can be extracted. Depending on the application and on the type
of MO, only the evolution of its representative location may be
relevant (e.g. museum visit analysis) or perhaps also its shape
and parts’ movements (e.g. sports performance analysis). In the
former case, a trajectory is typically represented as a sequence
of timestamped spatial points, as explained in Subsection 3.2.
Due to a building’s clearly separated spaces, we consider regions
(instead of points) as our primary primitive spatial entities, in the
spirit of Qualitative Spatial Representation [10] and IndoorGML’s
cellular space [19], both described in Section 2.

Definition 3.1 (semantic trajectory). A semantic trajectory is
defined as the couple of its spatiotemporal trace and the setAtraj
of semantic annotations describing it in its entirety, as given by
the following equation:

TIDmo,tstar t ,tend = (traceIDmo,tstar t ,tend ,Atraj )

where IDmo is the identifier of the MO concerned, tstar t and
tend are the trajectory’s starting and ending timestamps. More-
over, traceIDmo,tstar t ,tend represents the spatiotemporal aspect

of the trajectory defined as a sequence of timestamped semanti-
cally annotated presence periods/intervals at states of the indoor
space graph G.

The second element of the couple in Def. 3.1 is a non-empty
set of semantic annotations characterizing the trajectory in its
entirety. A trajectory semantic annotation atraj ∈ Atraj is not
confined within specific types of information, but would typi-
cally be chosen to represent an activity, a behavior, or a goal
showcased by the complete trajectory. These terms are often
ambiguously used in trajectory literature. Here, we consider an
“activity” to concern more targeted/conscious actions than a “be-
havior”, which concerns less intentional actions or reactions.
Both describe the actuality of movement. A “goal” might instead
concern the potentiality of movement (e.g. a disrupted activity).

Definition 3.2 (semantic trajectory trace). A semantic trajectory
trace is defined as following:

traceIDmo,tstar t ,tend = (ei ,vi , t
star t
i , tendi ,Ai )i ∈[1,n]

where ei = (vi−1,vi ) ∈
m⋃
i=0

Eacci is the transition, i.e. boundary

crossed, that led the MO from statevi−1 to statevi at time tstar ti ,
where it stayed until time tendi . Moreover, Ai is a potentially
empty set of semantic annotations describing that specific stay.
Given that each layer’s NRG is a multigraph, it is generally useful
to know the specific transition ei (e.g. which door, staircase, or
elevator was used), albeit optional2.

For example, the spatiotemporal trace of a museum visitor’s
3-hour visit (on a given day) might resemble the following:
traceIDvis ,11:30:00,14:28:00 = {
(_,room001,11:30:00,11:32:35,∅),
(door012,hall003,11:32:31,11:40:00,∅), ...
(door005,room006,14:12:00,14:28:00,∅) }

We define a semantic subtrajectory as being for all practical
purposes a semantic trajectory (similar to how a mathematical
subsequence is itself a sequence) but necessarily referable to
some other main semantic trajectory:
2For applications where individual transitions bear a dynamic semantic load (e.g.
setting off an alarm with some probability), we can extend the TM with semantic
transition annotations, effectively substituting ei with esemi = (ei , Atransi ).



Definition 3.3 (semantic subtrajectory). Given a semantic tra-
jectory

TIDmo,tstar t ,tend = (traceIDmo,tstar t ,tend ,Atraj )

a semantic subtrajectory of it is defined as:

T ′
IDmo,t ′star t ,t

′
end
= (trace ′IDmo,t ′star t ,t

′
end
,A′

traj )

iff trace ′ is a proper subsequence of trace:
tstar t ≤ t ′star t < t ′end < tend or tstar t < t ′star t < t ′end ≤ tend .

A subtrajectory’s set of semantic annotations A′
traj may or

may not be the same as that of its main trajectoryAtraj , contrary
to [8], where a subtrajectory is enriched with different types of
semantic information than its main trajectory.

Moreover, in the following, we define an episode of a semantic
trajectory as any particularly meaningful part of it.

Definition 3.4 (episode). Given a semantic trajectory

TIDmo,tstar t ,tend = (traceIDmo,tstar t ,tend ,Atraj )

an episode of it is defined as

T ′
IDmo,t ′star t ,t

′
end
= (trace ′IDmo,t ′star t ,t

′
end
,A′

traj )

iff (1)T ′
IDmo,t ′star t ,t

′
end

is a semantic subtrajectory ofTIDmo,tstar t ,tend ,
(2) A′

traj , Atraj , and (3) it satisfies a given spatiotemporal
and/or semantic predicate:

Pep : T ′
IDmo,t ′star t ,t

′
end

→ {true, f alse}

where Pep is domain-dependent and user-defined.
Moreover, an episodic segmentation of a semantic trajectory

is simply any subset of its episodes that covers it time-wise. Con-
trary to typical literature practice, we allow an episodic segmen-
tation to contain episodes that overlap in time, since the exact
same movement part may have multiple meanings depending
on the broader context. An example illustrative of the museum
domain is given in the next Section.

Finally, the SITM is event-based in the sense that, only a
change of the spatial cell that the MO is located in, or a change
of the semantic information regarding the MO’s presence in that
cell, needs to be accompanied by a new tuple and a corresponding
timestamp. Hence, in the previous museum visit example the last
presence interval could be split if the visitor changes his goal
while in room006 (which hosts both exhibits and the gift shop):
(door005,room006,14:12:00,14:21:45,{goals:[“visit”]}) and
(_,room006,14:21:46,14:28:00,{goals:[“visit”,“buy”]}). This model-
ing approach allows us to integrate different data sources in order
to semantically enrich the trajectory.

4 THE LOUVRE CASE STUDY
In this section, we present a compelling trajectory dataset from
the world’s most frequented museum, the Louvre Museum.

4.1 Visitor Movement Dataset
In July 2016, the Louvre launched its official “My Visit to the
Louvre” smartphone application, which takes advantage of a
large Bluetooth Low Energy (BLE) beacon infrastructure3 and
the smartphone’s accelerometer and compass, in order to estimate
the visitor’s (lat,long) coordinate position within the museum.
This is accomplished via BLE Received Signal Strength Indicator
(RSSI)-based trilateration, extended Kalman and particle filtering
techniques. The app visualizes the position over a locally stored
3Around 1800 beacons installed across all five floors.

version of the museum map for navigation purposes. The Louvre
has already been the object of visitor mobility research in the past
leading to interesting conclusions [27], but the current beacon
infrastructure offers improved tracking coverage and continuity.

In the obtained dataset, raw geometric positions have already
been spatially aggregated into 52 non-overlapping zones. Each
zone corresponds to a large polygonal area of the museum (Fig-
ures 3 and 5) specified by the museum administration in such a
way so as to reflect a single exhibition theme (e.g. Italian paint-
ings) but also only extend within a single floor. In more detail,
our dataset consists of 4,945 visits (continuously collected from
19-01-2017 to 29-05-2017, where each visit consists of a sequence
of timestamped “zone detections”, i.e. detections of the visitor’s
smartphone inside a certain zone. The duration of a visit ranges
from 0 sec (potential error) to 7 hours, 41 min and 37 sec, whereas
the duration of a zone detection ranges from 0 sec (potential er-
ror) to 5 hours, 39 min and 20 sec. The visits were performed by
3228 different visitors using both the iPhone and Android app
versions. Out of them, 1227 were “returning” visitors who made
1717 second/third visits, although not necessarily on different
days. The dataset includes 20,245 zone detections and 15,300
(intra-visit) zone transitions in total.

Unfortunately, the trajectories obtained from the dataset are
sparse, since a visitor may delay launching the app or stop using
it early in the visit for a variety of reasons, ranging from battery
depletion to lack of engagement or sporadic navigation-only us-
age. Moreover, around 10% of the zone detections have a duration
of zero value, forcing us to filter them out as detection errors.

4.2 Model Instantiation
In order to instantiate the STIM presented in Section 3 for the
Louvre case, we need first to represent Louvre’s indoor spaces
according to the proposed graph-based model. This is done in
Figure 2. Although the Louvre’s multi-layered graph is prohib-
itively large to be included in this paper, we cite hereafter its
correspondences with respect to Figures 3 and 5: Layer 4 is instan-
tiated as the whole “Louvre Museum”, Layer 3 as its three wings
(“Richelieu”, “Denon”, and “Sully”) as well as the “Napoleon” area
(under the Pyramide), Layer 2 as a wing’s five different floors (-2,
-1, 0, +1, +2), Layer 1 as a floor’s rooms and halls (hundreds in
total), and Layer 0 as a room’s exhibits (several hundreds of the
most important ones). In addition, we add a semantic layer that
happens to fall right between Layer 2 and Layer 1, representing
the thematic zones of our dataset as described in Subsection 4.1
(Figure 3). Layer 4 actually represents a level above any specific
building, denoting whether a visitor is at the Louvre in general.
Layer 3 treats each wing of the museum as a separate building
because its spaces and usage are practically equivalent to that
of a typical building. In Layer 0, we opted to define a RoI as the
predefined spatial area of engagement with the corresponding
exhibit, outside of which a visitor is certainly not paying atten-
tion to it. For simplicity, a RoI includes the area physically taken
up by the exhibit itself and its display installation (i.e. no holes).

Finally, an interesting spacemodeling decision concernswhether
or not to assume that the spatial region represented by a node
in layer i + 1 is fully covered by the union of the spatial regions
represented by its child nodes in layer i . For example, is a floor
fully covered by the rooms it contains (Figure 2)? Although not
explicitly stated, the IndoorGML standard and related works (e.g.
[17]) seem to adhere to a full-coverage hypothesis. This has the
advantage that accessibility relations need only be captured at



Figure 3: Choropleth map of visitor detections in the Louvre’s 11 ground floor polygonal zones.

the lowest possible level of the hierarchy, from where they can
be inferred for the higher levels. However, it is often an unre-
alistic assumption [20]. In Figure 4 for instance, the RoIs of the
displayed exhibits do not completely cover their room’s surface.

Figure 4: Indicative representation of the RoIs contained
within zones 60854 and 60853 of the Louvre.

Having instantiated the Louvre’s indoor space representation,
the SITM is used to extract (from the zone detection data) the
Louvre visit trajectories as sequences of presence intervals in
the museum’s thematic zones. Figure 6 depicts the accessibil-
ity topology of the 30 zones present in the dataset, which was
extracted by hand on site and can therefore also assist in filter-
ing out data errors. The figure’s lower part corresponds to the
−2 floor of the museum, and a short sub-visit of a random visi-
tor in February 2017 is drawn over it: at time t1 the visitor was
detected in Zone60887 (i.e. E in Figure 5) for a duration of δt1,
and at time t2 he was detected in Zone60890 (i.e. S in Figure 5)
for a duration of δt2. From the zone layer NRG (Figure 6) we
can infer that although never detected there, the visitor must
have passed from Zone60888 (i.e. P in Figure 5). In our SITM,
this would be captured with the addition of an extra tuple in
the sequence, e.g.: (checkpoint002, zone60888, 17:30:21, 17:31:42,
{goals:[“cloakroomPickup”,“souvenirBuy”,“museumExit”]})

The semantics of places also offer us valuable insight about
the visitor’s trajectory. For instance, we know that the visitor
disappearing after Zone60890 is normal because it is one of the
Louvre’s exit zones (through the Carrousel Hall). Also, Zone60887

Figure 5: A Louvre visit trajectory may contain two over-
lapping “exit museum” and “buy souvenir” episodes.

hosts the temporary exhibition of the Louvre which requires a
separate ticket to enter. Thus, we would expect that δt1 ≫ δt2.
There are many such interesting examples, where cell semantics
could help, not only explain the results of, but potentially even
redesign, existing sequential pattern mining methods.

It is now more apparent why our SITM allows for overlap-
ping episodes instead of requiring mutually exclusive episode
predicates (as in [26] for example). For instance, if a given visitor
(Figure 5) has visited the temporary exhibition (hosted in E) and
wishes to leave the museum, he may take the path E→P→S→C
before his trace disappears, as he is leaving the museum through
the Carousel exit (C). However, he may also want to first buy
something from the souvenir shops (hosted in S). Hence, when
considering a goal-related episodic segmentation of his trajectory,
we may tag the whole E→P→S→C part with the “exit museum”
goal and its E→P→S subsequence with the “buy souvenir” tag.
More generally, any part of the MO’s trajectory may correspond
to multiple episodes (goal-related or otherwise).

5 CONCLUSIONS AND FUTUREWORK
In this work, we presented an indoor space representation based
on the IndoorGML standard [19] and using a hierarchical graph
structure similar to [17]. The main difference is that we require
a static hierarchy of three basic layers (building, floor, room)
and propose two more typical layers (building complex, intra-
room region of interest), thus avoiding ad-hoc subdivisions of
space. Motivated by our case study involving a museum visitor
mobility dataset, containing spatially aggregated timestamped
detections, we instantiated the space representation, also adding
a case-specific semantic layer of “thematic zones” that matches
the granularity of our data. We also explained how a sequence



Figure 6: Based on the chain topology of zones, a visitor’s
presence in Zone 60888 (blue zone) can be inferred.

of presence intervals in symbolic indoor areas, coupled with se-
mantic annotations, and flexible concept definitions, can produce
a Semantic Indoor Trajectory Model (SITM) that adopts good
practices from state-of-the-art semantic outdoor TMs.

We will next focus on developing new data mining methods
that exploit the expressiveness of the SITM, and on proposing
semantic similarity metrics for trajectories (e.g. for visitor profil-
ing). In the future, it would be interesting to integrate the indoor
space representation with formal ontologies of cultural heritage
information (e.g. CIDOC Conceptual Reference Model [12]). Also,
modeling conceptual instead of physical trajectories could be
compelling in the museum domain, where an interpretation of
visitor movement based on “focus of attention” is sometimes
even more important than one based on physical presence. With
regards to the Louvre case, it would be of interest to account
for the problem of data sparsity by restructuring longer indica-
tive visits from the actual fragmented zone sequences. However,
the data can already provide some interesting insight albeit at a
coarse level of granularity (e.g. floor-switching patterns).
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