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ABSTRACT
Nowadays, the vast amount of produced mobility data (by sen-
sors, GPS-equipped devices, surveillance networks, radars, etc.)
poses new challenges related to mobility analytics. In several ap-
plication, such as maritime or air-tra�c data management, data
analysis of mobility data requires weather information related to
the movement of objects, as this has signi�cant e�ect on various
characteristics of its trajectory (route, speed, and fuel consump-
tion). Unfortunately, mobility databases do not contain weather
information, thus hindering the joint analysis of mobility and
weather data. Motivated by this evident need of many real-life
applications, in this paper, we develop a system for integrating
mobility data with external weather sources. Our system is de-
signed to operate at the level of a spatio-temporal position, and
can be used to e�ciently produce weather integrated data sets
from raw positions of moving objects. Salient features of our
approach include operating in an online manner and being re-
usable across diverse mobility data (urban, maritime, air-tra�c).
Further, we extend our approach: (a) to handle more complex
geometries than simple positions (e.g., associating weather with
a 3D sector), and (b) to produce output in RDF, thus generating
linked data. We demonstrate the e�ciency of our system using
experiments on large, real-life data sets.
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1 INTRODUCTION
The ever-increasing rate of generation ofmobility data bymodern
applications, including surveillance systems, radars, and GPS-
enabled devices, poses new challenges for data management
and analysis. To support advanced data analytics, mobility data
needs to be enriched by associating spatio-temporal positions of
moving objects with external data sources, as the data is ingested.
This problem is known as data integration and is particularly
challenging in the era of Big Data [2].

One signi�cant data integration task common in all domains,
including urban, maritime and air-tra�c, is related to weather in-
formation. This is due to the fact that weather plays a critical role
in the analysis of moving objects’ trajectories [3, 8]. The reason
is that having available the weather information together with
kinematic information enables more complex reasoning about
trajectory data, with prominent examples trajectory prediction
© 2019 Copyright held by the author(s). Published in the Workshop Proceedings
of the EDBT/ICDT 2019 Joint Conference (March 26, 2019, Lisbon, Portugal) on
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and clustering. In the former case, the trajectory that will be
followed by a moving object clearly depends on weather, while
in the latter case common patterns of movement may be revealed
when taking weather into account.

Furthermore, our involvement in several EU projects and the
interaction with domain experts has strengthened the above ob-
servation. Namely, in �eet management use-cases (cf. project
Track&Know1), fuel consumption can be estimated more accu-
rately if weather information is available (mostly rain-related
information). In the maritime domain (cf. projects BigDataStack2
and datAcron3), weather typically a�ects the trajectory followed
by a vessel. Last, but not least, in air-tra�c management (cf.
project datAcron), storm-related information may a�ect not only
the route of an aircraft, but can also result in regulations for
�ights and eventually delays, which could probably be predicted.
Therefore, a common requirement across all these domains is to
have available weather information together with the positions
of moving objects.

Unfortunately, despite the signi�cance of integrating mobil-
ity data with weather, there is a lack of such publicly available
systems or tools that are easy to use. Motivated by this limita-
tion, in this paper, we present the design and implementation of
weather integration system, which has several salient features:
(a) it works as a standalone and re-usable tool for data integration
of mobility data with weather, (b) it is e�cient in terms of pro-
cessing performance, thus making it suitable for application in
online scenarios (stream processing), (c) it supports enrichment
of complex geometries (e.g., polylines, polygons) with weather
data, which is not straightforward.

In summary, we make the following contributions:
• We present a generic system for integrating mobility data
represented by spatio-temporal positions with weather
information, focusing on ease of use and e�cient process-
ing.

• We show how to extend the basic mechanism to perform
weather integration for more complex geometries, such
as large 3D sectors, which is not straightforward.

• We demonstrate the e�ciency of our system by means of
empirical evaluation on real-life mobility data sets from
di�erent domains (urban, maritime and air-tra�c).

The remainder of this paper is structured as follows. Section 3
describes how weather data is made available, its format, and
internal structure. Section 4 presents the system architecture

1https://trackandknowproject.eu/
2https://bigdatastack.eu/
3http://datacron-project.eu/

https://bigdatastack.eu/
http://datacron-project.eu/
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of the weather integration service. Section 5 provides various
extensions of the basic functionality, thus improving the usability
of the system in di�erent application scenarios. The experimental
evaluation is provided in Section 6, and we conclude the paper
in Section 7.

2 RELATEDWORK
The signi�cance of integrating mobility data, in the form of AIS
messages, with weather data has been identi�ed as a major chal-
lenge for enabling advanced analytics in the maritime domain [1].

In the context of linking mobility data to external data sources,
in order to produce semantic trajectories, one external source
that has been considered is weather. For example, FAIMUSS [6]
generates links between mobility data and other geographical
data sources, including static areas of interest, points of inter-
est, and also weather. The above system is designed to generate
linked RDF data, using a RDF data transformation method called
RDFGen [7], which imposes that the output must be expressed
in RDF. However, this also poses an overhead to the application,
since it dictates the use of an ontology and the representation of
domain concepts. Instead, in our work, we focus on lightweight
integration, which practically associates weather attributes to
spatio-temporal positions. This approach is easier to use by de-
velopers, without imposing the use of RDF.

Only few works study the concept of weather data integration,
focusing on real-time applications. Gooch and Chandrasekar [4]
present the concept of integratingweather radar datawith ground
sensor data which will respond to emergent weather phenomena
such as tornadoes, hailstorms, etc. The integration procedure
takes place in CHORDS and a special technique is used in order
to address the high dimensionality of weather radar data.

Kolokoloc [5] applies open-acess weather-climate data inte-
gration on local urban areas. Speci�cally, by using open-access
data by meteo-services, integration of weather data is applied on
locations stored in MySQL database.

3 DESCRIPTION OF WEATHER DATA
GRIB (Gridded Binary) format 4 is a standard �le format for stor-
ing and transporting gridded meteorological data in binary form.
The GRIB standard was designed to be self-describing, compact
and portable. It is maintained by the World Meteorological Orga-
nization (WMO). All of the National Met Services (NMS) use this
kind of standardization in order to store and exchange forecast
data. GRIB �les are provided by National Oceanic and Atmo-
spheric Administration (NOAA), containing data from numerical
weather prediction models which are computer-generated.

NOAAo�ers several data sets composed of GRIB �les, based on
one of the provided model data. Four categories of model data are
available5; Reanalysis, Numerical Weather Prediction, Climate
Prediction and Ocean Models. Model data are represented on a
grid (two-dimensional space), divided into cells where each one
maps a speci�c geographical area. Data is associated with every
grid cell; weather information is provided for every geographical
place being included in the grid. Model data contain also the
temporal dimension inasmuch the weather conditions do not
remain static accross the globe. In other words, model data are
gridded data with spatio-temporal information. The o�ered data
sets can be considered as three-dimensional cubes with weather
data over a time period. In some cases, a fourth dimension is

4http://weather.mailasail.com/Franks-Weather/Grib-Files-Getting-And-Using
5https://www.ncdc.noaa.gov/data-access/model-data/model-datasets

included, namely the altitude, for weather information that does
not refer to the surface of the earth.

In this work, we use GRIB �les based on the Global Forecast
System (GFS) which is a type of Numerical Weather Prediction
6 (NWP) data model. NWP is a widely used model for weather
forecasting generally, exploiting the current state of weather for
making predictions. Current observations are (computer) pro-
cessed, as they served as an input to mathematical models. Many
attributes of the future weather state are produced as an output,
such as temperature, humidity, precipitation, etc.

The GFS model7 is composed of four distinct models; the atmo-
sphere model, the ocean model, the land/soil model and the sea
ice model. All of these models provide a complete image about
the weather conditions around the globe. GFS is produced by the
National Centers for Environmental Prediction (NCEP). The data
set product type we use in this work is the GFS Forecasts. Also,
two other GFS product types exist, the GFS Analysis and the
Legacy NCEP NOAAPort GFS-AVN/GFS-MRF Analysis and Fore-
casts. The products come with some data sets that di�erentiate
to the grid scale or the covering time period.

In this work, we use the data set of GFS Forecasts product
that has the globe partitioned per 0.5� degrees on the geographic
coordinates (longitude and latitude); also, another GFS Forecasts
product exist that has the globe partitioned with 1� degrees. Ev-
ery day the mathematical forecast model is run four times and
has one of the following time references; 00:00, 06:00, 12:00 or
18:00. The time reference is the time that the forecast starts. Each
of the forecast models cover the weather conditions around the
globe for 384 hours (16 days) after its starting time. Speci�cally,
a forecast model covers the weather conditions for 93 di�erent
timings, called steps. Every step is a distinct GRIB �le, containing
numerous weather attributes that are instantaneous and aggre-
gates (averages).

The steps start from 000 to 240 (increased by 3) and continue
to 252 until 384 (increased by 12). The step number indicates that
the weather information contained in the GRIB �le refer to the
timing of X-hours after the forecast starting time. For example,
the 000 step contains only instantaneous variables, referring to
the forecast starting time (as the �rst step, it does not contain
aggregate variables). The 003 step contains both instantaneous
and aggregate variables. The instantaneous variables refer to the
timing of weather attributes after 3-hours from the forecast ref-
erence time. The aggregate variables contain the averages of the
3-hours that passed. The same applies to the 006 step, containing
both instantaneous and aggregate variables. The instantaneous
variables refer to the timing of weather attributes after 6-hours
from the forecast reference time. The aggregate variables con-
tain the averages of the 6-hours that passed. The same pattern
does not continue for the aggregate variables on the next steps.
For instance, the 009 step contain aggregates variables that re-
fer to the averages of weather attributes of the last 3-hours and
step 012 contain aggregate variables that refer to the averages
of weather attributes of the last 6-hours (the pattern is repeated
until the 240 step). The aggregate variables of the steps greater
than 240 [252...384] are the averages of weather attributes of the
last 12-hours.

In our work, we use the four forecast models of a day with
step 003 from the GFS Forecasts product; therefore, every day

6https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/numerical-
weather-prediction
7https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-
forcast-system-gfs
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Figure 1: The system architecture of the weather integrator mechanism.

consists of 4 GRIB �les that cover the instantaneous variables of
weather attributes at speci�c timings of a day; 3:00, 9:00, 15:00
and 21:00. Since we use the 003 step, we have access to the 3-hour
aggregates variables that cover the time following time periods
of a day; 00:00-3:00, 06:00-9:00, 12:00-15:00 and 18:00-21:00.

4 SYSTEM ARCHITECTURE
The proposed system operates at the level of a single record, cor-
responding to a spatio-temporal position, and processes records
independently of each other. The spatio-temporal position can
be in the 2D space (x ,�, t ) of 3D space (x ,�, z, t ). At an abstract
level, the system uses an external source storing weather data,
in order to extract the desired weather attributesw1,w2, . . . ,wn
that are associated with the speci�c position. In the case of 2D
data, its output is an extended record that consists of the �elds:
x ,�, t ,w1,w2, . . . ,wn . Obviously, any other additional �elds of
the input record are maintained also in the output record. In the
following, we present our techniques for implementing this data
integration process in an e�cient way.

4.1 Basic Functionality
The architecture of the system consists of two parts-mechanisms
whose functionality is combined for the data integration ser-
vice provision. The �rst part is called Spatio-Temporal Parser
and the second part is the Weather Data Obtainer. The overall
architecture is illustrated in Figure 1.

The Spatio-Temporal Parser parses sequentially the records of
the input data set of mobility data. For each record, a set of basic
data cleaning operations are performed. For instance, the spatio-
temporal part is checked both for its existence (null or empty
values) and its validity (valid longitude and latitude values). If
the spatial or temporal information of a record is out of the valid
range or missing, the parser ignores the whole record, writes
information in an error log, and the parsing procedure continues
by accessing the next record. Each record with valid spatial and
temporal information is passed to the Weather Data Obtainer

Mechanism, which is responsible of getting the values of the
weather attributes from the weather data source that contains
weather information (GRIB �les). Then, the obtained values are
concatenated with the current processed record, forming thus an
enriched record containing values of weather attributes. Subse-
quently, the resulting record is written to a new �le in the hard
disk; the whole procedure generates a new (enriched) data set.
The logical separation of parsing from the remaining functional-
ity is useful, since the system can be easily extended to read data
from other data formats and sources, such as XML, JSON, or a
database.

The Weather Data Obtainer is the mechanism that �nds the
values of weather attributes given a longitude, a latitude and a
date value. In case of 4D mobility data, it also uses the altitude
as input. The functionality of the Obtainer is based on GRIB �les
since its role is to obtain from them weather information for a
speci�c timespan. After the Obtainer has received the spatial
and temporal information, its �rst step is to determine the right
GRIB �le that should be accessed in order to get the values of
the weather attributes; each of the GRIB �les contains weather
data only for a speci�c time period. As a result, the covering
timespan of the chosen GRIB �le should be the closest to the
given timestamp of the spatio-temporal position.

The procedure of matching the given timestamp with one of
the GRIB �les, is achieved by maintaining a Red-Black Tree data
structure in-memory, organizing the references (paths) of each
GRIB �le from a given set. The tree’s node arrangement (key)
is determined by the covering time of each GRIB �le. Given a
timestamp such as 4/12/2016 05:10:00, the tree �nds two GRIB
Files - f1 and f2 that cover earlier and later time respectively;
in our example, these are 4/12/2016 00:00:00 (f1) and 4/12/2016
06:00:00 (f2). Due to the fact that the given timestamp is closer to
4/12/2016 06:00:00, the f2 �le is chosen for opening. The forma-
tion of the Tree Data Structure is considered as a pre-processing
step, prior to processing mobility data.
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After a speci�c GRIB �le is selected, it must be opened in
order to retrieve the weather attributes associated with the spatial
part of the spatio-temporal position. There are two options of
accessing the values of weather attributes of a GRIB �le. The �rst
is by loading and keeping in memory the weather attribute(s) of
interest, while the second is by retrieving the weather attribute(s)
from disk. The purpose of loading and keeping in memory is to
perform e�ciently repeated read operations, but there is a natural
trade-o� in terms of speed andmainmemory consumption. In our
case, the parameters required to identify the value of a weather
attributes are the spatial values (longitude and latitude) of the
record at hand. These are used for determining the cell (region
that results from grid partitioning) in order to get the values of
the weather attributes.

4.2 Caching Mechanism
As GRIB �les are binary �les, which are accessed by an API, there
exists an overhead related to opening a �le. In case of multiple
read operations, this cost can easily dominate the total processing
time, especially if many �les need to be opened by input records.

To avoid this overhead, we introduce a simple caching mecha-
nism, which practically maintains in memory references to open
�les, in order to avoid repeated open/close operations. In the gen-
eral case, the caching mechanism is crucial for the performance
of the data integration procedure because a GRIB �le remains
open and can serve many sequential requests. This relieves the
Weather Data Obtainer from the task of re-loading the GRIB �le
in-memory for every record, thus saving signi�cant time. The
cache replacement policy adopted is simple LRU.

It should be mentioned that in case of sorted access to mobility
data based on the temporal part of the spatio-temporal position,
the value of the caching mechanism is negligible. However, there
exist cases where the underlying mobility data is not strictly
sorted by time. This typically occurs in real-life surveillance
data acquisition, where some records corresponding to positions
of moving objects may be delayed. In such cases, the caching
mechanism can improve performance signi�cantly.

5 EXTENSIONS
In this section, we describe two extensions of the basic system
for weather data integration. The �rst extension concerns inte-
gration of weather information with complex geometries, such
as 3D sectors and airblocks, which are prevalent in air-tra�c
management (ATM) applications. The second extension is about
providing output in RDF format, thereby generating linked data.

5.1 Enriching Complex Geometries with
Weather Data

A useful extension of the proposed system is towards more com-
plex (compared to a single point) geometries. In many cases we
may need to associate the trajectory of a moving object (i.e. a
LineString geometry) with weather conditions, or a region or
a cluster of regions on the surface of the earth (i.e. polygon or
multi-polygon geometries).

The �rst extension of the proposed system is towards comput-
ing the average of values of a selected weather attribute, over a
(potentially 3D) geometry. Speci�cally, given a geometry � and
a time interval [ts , te ] (not necessarily a proper interval, i.e., it
may hold that ts = te ), where ts is the time instant denoting the
starting time of the interval and te is the time instant that the
interval ends, this extension returns the average of all the values

retrieved for all the points of the geometry. Since the GRIB �le
that we use has resolution of 0.5 degrees, we reduce the geometry
to 0.5 degree precision. This will reduce the number of points
and the number of requests to the GRIB �le. The same geometry
simpli�cation is applied for altitude of the 3D geometry, i.e., the
z-axis values are reduced to the isobaric levels used in the GRIB
�le (and for weather attributes that depend on altitude). The
core function used for retrieving the values of selected weather
attributes for a given spatio-temporal position is used for each
point of the geometry, and the average of these values is returned
as result.

Figure 2: Example of airblock (in blue), its simpli�ed ge-
ometry (in red), and temperature surface shown in the
coloured map.

Figure 2 depicts the 2D projection of a selected 3D geome-
try (corresponding to an airblock) located above Lille, in France.
Computing the value of a selected weather attribute (e.g., tem-
perature) for this airblock is performed by taking the points that
constitute the simpli�ed geometry, and retrieving the weather
attribute values for these points. As depicted in the �gure, the
geometry spans multiple cells of the GRIB �le with di�erent
temperature values (shown in the coloured map), thus di�erent
temperature values are retrieved, and the average is computed.

A generalization of this extension, is to return a vector of
values for each selected weather attribute. This feature is useful
especially for LineString geometries, i.e., for studying the behav-
ior of a moving object through its recorded trajectory. Then, the
application can specify how to use the vector to compute the
weather conditions. Averaging the values of the vector is just the
most straightforward use.

5.2 Providing Linked Data in RDF
The proposed system has also been extended to operate on RDF
data, both as a consumer and as a server. Since RDF is the W3C
standard to be used for Linked Open Data, connecting as a con-
sumer to RDF triples, it can exploit any positioning data available
on the web, to return it enriched with weather data. Furthermore,
serving RDF positioning data enriched with weather data under a
common schema, can support several tasks from event or pattern
recognition to link discovery between multiple data sets. Exactly
this functionality of our system to generate linked mobility data
with weather has been exploited in the context of the datAcron
project [6, 8].

When acting as an RDF consumer and given the schema of
the data source, the proposed system executes a SPARQL query
to retrieve the necessary positioning and temporal values for
each point. If the data source provides complex geometries, these
can also be exploited, as discussed previously. For each record
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Figure 3: Example of generating linked RDF data.

retrieved by the SPARQL query, the core function retrieves the
corresponding values of the selected weather attributes and en-
riches the record.

When the proposed system serves the enriched data as RDF
triples, it only requires a triple template to be used on an RDF-
Gen [7] instance. This will transform each geometry that is en-
riched with weather data, to RDF triples w.r.t. a given schema.
Figure 3 illustrates the operation of our system as a server of
RDF data. The records describing positional information have
been extended with the desired weather attributes. The triple
generator of an RDF-Gen instance receives such records, and
outputs a corresponding RDF graph fragment, which has been
speci�ed by a graph template. Essentially, the graph template
determines the structure of the output RDF data. In addition, it
supports data transformation functions, such as makeSemNode
in the graph template depicted in Figure 3.

Obviously, the proposed system can be used in the same time
as consumer and as a server, enriching RDF data with weather
attributes and values. Since RDF-Gen can provide consistent
triples to any given schema, this extension can enhance any
positioning and weather related ontology.

6 EXPERIMENTAL EVALUATION
In this section, we provide the results of the empirical evalu-
ation performed using real-life data from the urban domain,
provided by a �eet management data provider. All experiments
were conducted on a computer equipped with 3.6GHZ Intel core
i7-4790 processor, 16GB DDR3 1600MHz RAM, 1TB hard disk
drive and Ubuntu 18.04.1 LTS operating system. Our code is
developed in Java and is available at the following link: https:
//github.com/nkoutroumanis/Weather-Integrator. For the access
to GRIB �les, we use the NetCDF-Java Library8.

6.1 Experimental Setup
Data sets. The mobility data set used in this work for the appli-

cation of the data integration procedure is in the form of CSV �les,
containing real trajectories of vehicles in the region of Greece.

8https://www.unidata.ucar.edu/software/thredds/current/netcdf-java/
documentation.htm

Figure 4: Illustration of mobility data use in the experi-
mental evaluation.

Figure 4 provides an illustration of the data distribution on the ge-
ographical map. Each record constitutes a spatio-temporal point
with additional information of the vehicle, such as speed, fuel
level, fuel consumed, angle, etc. The records of the CSV �les are
provided in temporal sort order. This resembles real-life opera-
tion, since positions of moving objects are transmitted by devices
located on vehicles, even though they are not received in strict
temporal order, but with small discrepancies.

https://github.com/nkoutroumanis/Weather-Integrator
https://github.com/nkoutroumanis/Weather-Integrator
https://www.unidata.ucar.edu/software/thredds/current/netcdf-java/documentation.htm
https://www.unidata.ucar.edu/software/thredds/current/netcdf-java/documentation.htm
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Due to the fact that the size of the complete data set is about
130GB and spans one year (July 2017 - June 2018), we take a
small sample (consisting of 9 CSV �les) whose temporal part is
in the time period of January 2018 for performing the �rst set
of experiments. Each �le is approximately 550KB and contains
about 4,500 records. In addition, we use a larger sample that
consists of 10GB of data, having 81,483,834 records in total.

For the weather data, we downloaded 124 GRIB �les (31 x 4)
corresponding to January 2018. These �les were used for obtain-
ing weather data information in the data integration process. We
use only the 003 steps of the 4 forecast models per day. The total
size of the GRIB �les is 8GB.

The resultant (enriched) data set contains the following 13
weather attributes that describe promptly the rain-relatedweather
conditions:

• Per cent frozen precipitation surface
• Precipitable water entire atmosphere single layer
• Precipitation rate surface 3 Hour Average
• Storm relative helicity height above ground layer
• Total precipitation surface 3 Hour Accumulation
• Categorical Rain surface 3 Hour Average
• Categorical Freezing Rain surface 3 Hour Average
• Categorical Ice Pellets surface 3 Hour Average
• Categorical Snow surface 3 Hour Average
• Convective Precipitation Rate surface 3 Hour Average
• Convective precipitation surface 3 Hour Accumulation
• U-Component Storm Motion height above ground layer
• V-Component Storm Motion height above ground layer

Metrics. Our primary target is to make the integration proce-
dure e�cient. For this purpose, we use the following metrics that
re�ect the mechanism performance:

• Execution time: The total required time for the completion
of the integration procedure (in minutes).

• Throughput: The number of processed records per second
(rows/sec).

• Cache hit ratio (CHR): The ratio number of cache hits to
the total number of records. In other words, this number
is the percentage of records that have been enriched with
weather information without requiring the corresponding
GRIB �le to be loaded in-memory. The higher the CHR
value, the larger the bene�t in execution time.

Methodology. The experimental evaluation is structured as
follows. First, we evaluate the performance of our system, in
terms execution time and throughput. Thus, we use two samples
of the complete data set of di�erent size:

• Small data set: 5.1MB of data corresponding to the trajec-
tories of few vehicles in January 2018.

• Large data set: 10GB of data covering the time span of the
complete data set.

The size of the integrated data set with weather is 8.6MB and
16.6GB respectively for the two sample data sets above.

Second, we evaluate the performance of the caching mecha-
nism. Since data is provided sorted in time, the caching mech-
anism is of little use. Therefore, we randomly shu�e the input
records, thus making a worst-case scenario where the input data
are processed in random order. In this case, two consequent
records will access di�erent GRIB �les with high probability.

Table 1: Evaluation on small data set.

Weather Execution Memory ThroughtputIntegration Time Consumption
With 12 sec 229 MB 3,570 rows/secIndexing

Without 1,660 sec 106 MB 26 rows/secIndexing
Pre- 1 sec 57 MB N/Aprocessing

Table 2: Evaluation on large data set.

Procedure Execution Memory ThroughtputTime Consumption
Weather 29,261 sec 176 MB 2,784 rows/secIntegration
Pre- 5 sec 59 MB N/AProcessing

6.2 Evaluation of Basic Functionality
Table 1 demonstrates some elements about the data integration
procedure for the case of the small data set. The �rst row in
the table refers to keeping in-memory the retrieved weather
values, whereas the second row corresponds to retrieval from
disk. Clearly, the former is the most e�cient way to perform
the integration task, achieving throughput of 3,570 rows/sec.
Instead, the latter approach only processes 26 rows/sec. This
gain comes with an overhead in memory consumption, which is
almost doubled, but is still manageable. Notice that the input data
set is provided sorted in time, therefore the observed throughput
of 3570 rows/sec is the best performance that can be achieved
on the given hardware. Regarding the pre-processing overhead,
namely the construction of the Red Black Tree that indexes the
GRIB �les, this is in general negligible (see the third row of the
table).

Table 2 shows the results when the large data set (10GB) is used.
We only employ our approach with in-memory maintenance of
the retrieved weather values. Again, the throughput is quite high
(2,784 rows/sec), thus showing that our performance results also
hold in the case of large data sets.

6.3 Evaluation of Caching Mechanism
Figures 5, 6, 7 and 8 show the performance achieved when the
caching mechanism is put in action. To stress-test our system, we
randomly shu�e the input records, thus generating a mobility
data set in random temporal order. Notice that is the hardest
setup for our system, since two consequent records will need to
access di�erent GRIB �les with high probability. To evaluate the
performance of the cache we gradually increase the cache size
(depicted on the x-axis).

Figure 5 shows that we achieve a cache hit ratio of more than
80% when using a cache size of 60 entries. Much smaller cache
sizes lead to lower cache hit ratio, which also has an impact on per-
formance. Also, the total execution time is reduced by a factor of
5 when using the larger cache size, as shown in Figure 6. Figure 7
shows the achieved throughput of approximately 140 rows/sec
with cache size of 60. We note that this value corresponds to the
worst-case setup for the weather integration mechanism, which
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Figure 5: Cache hit ratio for increased cache size.
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Figure 6: Total execution time for weather integration for
increased cache size.

 20

 40

 60

 80

 100

 120

 140

 10  20  30  40  50  60

T
h

ro
u

g
h

p
u

t 
(r

o
w

s/
se

c)

Cache Max Entries

Figure 7: Throughput for increased cache size.
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Figure 8: Memory consumption for increased cache size.

is seldom encountered in practice. Finally, Figure 8 shows that
higher cache sized also result in higher memory consumption.

In summary, the caching mechanism can be very useful in the
case of input data that is not temporally sorted, since it improves
performance signi�cantly, at the expense of higher memory con-
sumption.

7 CONCLUSIONS
In this paper, we presented a system for integrating mobility
data with weather information, which focuses on ease of use

and e�ciency. The proposed mode of operation is record-by-
record, which is an abstraction that o�ers signi�cant bene�ts,
including fairly easy parallelization. Furthermore, we show that
the proposed system is extensible, demonstrating its use to enrich
complex 3D geometries with weather (instead of simple points)
and the generation of linked data in RDF. Our experiments on
real-life data sets show the e�ciency of our system.

In our future work, we intend to study the gain in performance
that can be attained by means of parallel processing, using a Big
data framework, such as Apache Flink of Spark Streaming. More-
over, we will focus on di�erent use-cases where our system can
be applied, e.g., batch processing to enrich a vast database of
historical trajectories with weather information. Also, we will
explore in much more detail the issue of enriching complex ge-
ometries with weather information, which is not straightforward
even for domain experts, especially for large-sized objects that
cover large parts of the space (trajectories, sectors, etc.).
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