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Abstract—This paper presents a study of location prediction
applied to trajectories obtained from sensors placed on road-
networks. We applied a variation of Recurrent Neural Networks
using different combination of features, to measure the impact
of each feature on the learning task.
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I. INTRODUCTION

The high availability of tracking data brought opportunities
to provide new methods to analyze and understand mobility
patterns. Among the analysis, location prediction has gained
some attention given its applicability. The mobility prediction
(or location prediction) problem focuses on inferring the
next relevant location of a moving object based on historical
trajectories and its most recent tracking. Many applications,
like smart transportation, traffic control, urban planning and
recommendation systems, can benefit from location prediction.
Three levels of mobility prediction were considered in [1]:
1) object position; 2) path prediction; and 3) next place
prediction. In levels 1 and 2, usually the models are learned
from raw trajectories obtained by Global Positioning System
(GPS) devices and their predictions consider the movement
of the object. Level 3 predicts stops rather than movements,
usually by learning from sequences of points of interest
or events. Differently of previous works, in this work, we
analyze movement of objects tracked by sensors placed on the
roads sides. Each sensor captures and registers the passage of
moving objects. Assuming that each register contains enough
information to uniquely identify the associated moving object,
it is possible to derive from them the trajectories of the moving
objects observed by the sensors. Our work is in between of
level 1 (object position) and level 2 (movement and path).

II. PROBLEM STATEMENT

1) Sensor Trajectory Prediction: Given a set of sensors S =
{s1,82,...,8n}, When a sensor s; captures the passage of a
moving object m at timestamp ¢, it registers an observation
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o = (s;,m,t). A trajectory traj =< 01,09,...,0, > of a
moving object m is the sequence of observations associated
to m, where ¢; < t;11. The trajectories are defined over a
period of the day.

The problem tackled here is to predict the next sensor given
the last k observations of a moving object (also called recent
trajectory) and the set of historical trajectories.

Different from classification problems with many classes,
we have to consider complex transitions patterns and time-
dependence. As the sensors have spatial relationships among
them, the proximity of the predicted location to the actual
value is also important. Furthermore, the trajectories obtained
from sensors have a set of particularities that give us new
opportunities and challenges.

1) Huge data: Sensors continuously capture huge number
of observations per day.

2) Exhaustive types of trajectories: Moving objects are
not restricted to a specific fleet of vehicles. Commuters,
fleet of taxi or buses, deliveries, etc. can all of them be
tracked by the sensors. Thus, trajectories can have very
different patterns.

3) Sparsity: The sensors are located on fixed positions,
usually only on the main roads of the city. The entire
tracking of moving objects is not available and the
trajectories are very sparse in space and time.

4) Incompleteness and uncertainty: Sensors may fail to
capture the passage a vehicle, producing incomplete
trajectories. It is not obvious when one observation is
not in the data set because the sensor failed or if it is
because the object did not passe by the sensor.

Recently, applying Recurrent Neural Networks (RNN) to
location prediction has demonstrated the potential of these
approaches to capture the complexity of mobility data. How-
ever, at the best of our knowledge, none of those works
have studied location prediction for trajectories based on
external sensor data. We call this problem “’Sensor trajectory
Prediction”. In this work, we evaluate RNN models based in
different set of features in order to understand the limitations
of the predictability of such trajectories. We compare these
approaches with the ones based on sequence patterns and
Markov models. Finally, we discuss the results and future
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Fig. 1. General architecture of the RNN for location prediction.

directions.

III. RELATED WORKS

TPRED [2] predicts the next stop from GPS trajectories. The
work in [3] predicts the next stop based on groups of users
who share the same profile (e.g. gender and age). GMove [4]
uses spatial-temporal information and geo-tagged text from
check-ins to predict the next stop. MyWay [5] predicts the
position of moving objects from their GPS trajectories based
on the clustering and spatial match. In [6],a Dynamic Bayesian
Network predict next location of sparse trajectories from call
details records. In [7], a Spatial-Temporal RNN predicts the
next location using spatial and temporal continuous values.
SERM [8] is a spatial-temporal RNN to predict the next stop.
TA-TEM [9] is a recommendation system based on RNN
which predicts the next stop. Both works [8] and [9] learned
from check-ins. DeepMove [10] uses attention RNN to predict
the stop on the next time window.

IV. RNN FOR SENSOR TRAJECTORY PREDICTION

The general architecture is a simplification of the model
proposed by [8]. The model (Figure 1) is composed by: i.
An embedding layer, responsible of reducing the dimensions
of input vectors; ii. A layer to concatenate the output of
embedding layers in order to get a unique input feature vector;
iii. A recurrent layer to learn the complex patterns from
sequences; iv. A fully connected layer with softmax function
as activation, which converts the result of the recurrent layer
into the set of probabilities to be assigned to each class label.

Our experiments were based on different features: the
spatial feature corresponds to the sensor label; the temporal
features is the time slot in a day which fits the timestamp of an
observation; and user identification captures user preferences.
We consider models with different combinations of these
features: spatial model (SM), spatial-temporal model (STM),
spatial-user model (SUM) and spatial-temporal-user model
(STUM). We use the one-hot representation to transform each
feature in a vector. A window of the k last observations is used
to learn the next position.

V. EXPERIMENTAL EVALUATION

1) Dataset: Trajectories were collected from 01/09/2017 to
30/09/2017, from 272 sensors in the city of Fortaleza, Brazil.
Originally, we received a total of 22,338,916 observations. We

TABLE I
ACCURACY OF MODELS.

Markovl MarkovS TDAG SM STM SUM STUM
41.71 38.84 38.95 0 4438 46.68  47.68
TABLE II
QUALITY IN TERMS OF CLOSENESS.

Model [50, 60, 70, 80, 90]-percentiles Mean

SM [8541.59, 10182.11, 11625.92,11844.64, 12724.72] 8342.45
STM [757.85, 1503.31, 2616.99,4249.94, 7211.40] 2273.89
SUM [559.12, 1553.77, 2651.52,4397.27, 7194.90] 2279.79
STUM [460.96, 1469.62, 2640.11,4349.11, 7233.33] 2262.16

filtered the trajectories and keep those with a minimum of 6
observations. We obtained 1,025,040 trajectories from 266,522
distinct vehicles.

2) Results: Models were trained and tested 5 times using
holdout 80-20. We also evaluate the accuracy of RNN models,
Markov Models of First and 5th orders and TDAG [11]
approaches (Table I). The STUM model reached the best
accuracy, which confirms the users tend to have similar and
time-dependent patterns. Even with only 4.5 trajectories per
user (in average), including the user id improves the accuracy.
SM suffers from overfitting in all executions, which means
that RNN needs complementary information to learn mobility
patterns from the trajectory paths only. We measure the error
of RNN models according to the closeness given by the road
distance from the actual location to the predicted one (Table
II). The quality of models in terms of distance to ground truth
is also improved by adding additional knowledge. Precisely,
with this metric, the RNN models using time and user features
showed a better performance.

VI. DISCUSSION AND FUTURE WORKS

In this paper we have shown preliminary results of the
application of RNN to sensor trajectory prediction. This type
of trajectories may capture very different mobility patterns,
since it is not restricted to a fleet or a community of users.
They are also sparse, incomplete and uncertain. We have also
highlighted the use of the underline road-network to estimate a
finer granularity trajectory definition and obtain better models
in terms of accuracy and error of distance.

As ongoing work, we are studying how to deal with missing
values by means imputation approaches for the sensor trajec-
tories while we take into account the uncertainty. As future
works, we want to use road network restrictions to discard
undesirable predictions and enrich the models. Finally, we
want to study how to improve the accuracy by means others
machine learning techniques, like unsupervised learning.
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